
von Karman Institute for Fluid Dynamics

Lecture Series 1997-02

28th computational fluid dynamics

3-7 March, 1997

Solution Adaptive Cartesian Grid Methods for
Aerodynamic Flows with Complex Geometries

M. J. Aftosmis

USAF/NASA Ames Research Center
Mail Stop T27B-2

Moffett Field, CA 94035-1000

Lecture notes for 28th Computational Fluid Dynamics Lecture Series, von Karman Institute for
Fluid Dynamics, Chaussée de Waterloo 72, B-1640 Rhode-Saint-Genèse, Belgium

dandm
Appendix B

dandm
Appendix B

Contents

1. Overview 1
1.1 Introduction . 1
1.2 Development of Cartesian Mesh Approaches 2
1.3 Motivation for Cartesian Mesh Approaches 3

1.3.1 Accuracy of Difference Schemes on nonUniform Meshes 3
1.3.2 Complex Geometry . 6
1.3.3 Surface Modeling Requirements . 8
1.3.4 Asymptotic Complexity . 9

1.4 Cut-Cell Cartesian Methods . 10
1.4.1 Structured Mesh Cartesian Approaches 11
1.4.2 Octree/Quadtree Based Cartesian Methods 15
1.4.3 Unstructured Cartesian Approaches 20

1.5 Rapid Mesh Traversal and Searching . 24
1.5.1 Proximity Queries . 26
1.5.2 Painting Algorithms . 35

2. Topological Primitives, Intersection and Geometric Degeneracy 38
2.1 Introduction . 38

2.1.1 Motivation . 38
2.1.2 Important Topics . 40

2.2 Component Intersection . 42
2.2.1 Spatial Searches . 42
2.2.2 Intersection of Generally Positioned Triangles in R3 43
2.2.3 Construction of Pierce-Points . 47
2.2.4 Retriangulation of Intersected Triangles 49

Voronoi Diagrams . 51
Delaunay Triangulations . 52
Delaunay Triangulation by Successive Point Insertion 53
Constrained Delaunay Triangulation . 56

2.2.5 The Incircle Predicate . 57
2.2.6 Inside/Outside Determination . 59

2.3 Floating-Point Filtering and Exact Arithmetic 63
2.3.1 Integer Arithmetic . 64

2.3.2 Exact Floating-Point Arithmetic . 65
3 x 3 or 4 x 4? . 66

2.3.3 Floating-Point Filtering and Error Bounds 67
2.4 Tie-Breaking, Degeneracy and Virtual Perturbations 72

3. Volume Meshing and Cut-Cells 77
3.1 Counting Arguments and Anisotropic Cell Division 77
3.2 Volume Mesh Generation . 80
3.2.1 Proximity Testing . 80
3.2.2 Geometric Refinement . 81
3.2.3 Data Structures . 83

3.3 Boundary Conditions and Cut-Cell Intersection 87
3.3.1 Cut-Cell Boundary Fidelity . 87
3.3.2 Cut-Cell/Surface Intersection . 88

Rapid Intersection with Coordinate Aligned Regions 89
Polygon Clipping . 91
Clipping Performance . 94

3.4 Example Cartesian Meshes . 96
3.5 Asymptotic Performance . 99
3.6 Future Work . 99

Acknowledgments 100

References 101

Solution adaptive Cartesian grid methods for
aerodynamic flows with complex geometries

Michael J. Aftosmis

Wright-Laboratory / NASA Ames
Mail Stop T-27B-2

NASA Ames Research Center
Moffett Field, CA 94035-1000

Cartesian methods for CFD offer an accurate and robust approach for simulating aerodynamic
flows around geometrically complex bodies. As a result of this flexibility, the quantity of literature
devoted to their study has grown substantially in recent years. These notes attempt to cover only a
subset of this on-going research. In doing so, however, they aim to provide insight into the funda-
mental challenges faced by practitioners of the approach, while also serving as a guide for fur-
ther exploration. The integration schemes used in Cartesian solvers are similar to those used in
other approaches. Therefore, these notes focus mainly on the geometric algorithms, surface model-
ing and boundary conditions needed to design a successful Cartesian mesh scheme.

1. Overview

1.1 Introduction
While both structured and unstructured approaches for CFD have enjoyed reasonable suc-
cess in their application to real-world problems, neither method has offered a truly “auto-
matic” method for discretizing the domain around arbitrarily complex geometries. One
reason for this stems from the fact that both techniques are body-fitted - i.e. cells neighboring
the body must conform to the surface. This implies that the connectivity of the computational
mesh is intimately linked to the body’s geometry and topology. As a result, the surface mesh
is (sometimes) subject to conflicting requirements of resolving both the local geometry and
the expected flow variation. While unstructured surface triangulations relieve some of this
burden by permitting vertices of arbitrary degree, structured surface meshes have the addi-
tional constraint of a prescribed connectivity.

Cartesian methods differ in that they are non-body-fitted. Hexahedral cells in the domain
consist of a set of right parallelepipeds and the (normally) orthogonal grid system may
extend through solid wall boundaries within the computational domain. The method then
removes, or flags, cells which are completely internal to the geometry and identifies those

− 2 −

1.2 Development of Cartesian Mesh Approaches

cells which intersect the solid walls. The remaining cells are considered general vol-
ume mesh elements. Fundamentally, Cartesian approaches trade the case-specific
problem of generating a body-fitted surface mesh for the more general problem of
computing and characterizing intersections between hexahedral cells and the sur-
face geometry. Thus, all difficulties associated with meshing a particular geometry
are restricted to a lower order manifold which constitutes the wetted surface of the
geometry. Researchers have been very successful in applying these techniques to
extremely complex geometries and have demonstrated that the technique is very
amenable to automation[34,47,56,57,58,74,91].

The generality of this approach has an important implication when assessing the
surface modeling requirements of a Cartesian method. Since mesh cells cut the
geometry arbitrarily, the cut-cells at the surface are de-coupled from the description
of the surface itself. The surface description is no longer required to resolve both the
flow and the local geometry as is the case with body-fitted approaches. The surface
description therefore may focus uniquely on the task of resolving the geometry, while
the mesh cells handle the job of describing the flow. We note at the outset, however,
that since solid wall boundaries do cut arbitrarily through the layer of “cut-cells”
encasing the body, accurate surface boundary conditions play an obvious role in suc-
cessful Cartesian schemes.

Cartesian approaches fall into two general categories. Either they consider the mesh
as an unstructured (or octree structured) collection of h-refined hexahedra, or they
operate by embedding structured sub-grids within structured mesh blocks (see the
Adaptive Mesh Refinement (AMR) work of [34]or [74]). In the unstructured or octree
techniques, volume meshing of the computational domain relies on the simple and
robust procedure of cell division. Beginning with a coarse background grid - or even a
single root cell - hexahedral elements are repeatedly subdivided in order to resolve
emerging features of the flow or geometry. The final mesh is viewed as either com-
pletely unstructured, or with underlying octree connectivity. Structured approaches
embed i,j,k structured patches with similar resolution goals. Successful 2-D and 3-D
solution procedures have been proposed following both implementations[18,34,56,74]

1.2 Development of Cartesian Mesh Approaches1

While three dimensional applications to complex geometry have become common-
place only recently, Cartesian approaches have been evaluated since the late 1970’s.

1. This discussion follows that of Melton in [56].

− 3 −

1.3 Motivation for Cartesian Mesh Approaches

Work by Purvis and Burkhalter[73] solved the full potential equation on 2D Carte-
sian meshes using a finite volume method. Solution of the Euler equations was pur-
sued in the mid-1980’s by a many researchers[29,45] and the first three dimensional
inviscid solutions appeared in the late 1980’s by Gaffney, Hassan and Salas[42].

Cartesian approaches have been successfully utilized in industrial applications
including Boeing’s TRANAIR code which solves the full potential equation, and the
commercially available MGAERO[85] package for Euler simulations. These applica-
tions are notable because they provide close links with surface modeling and provide
a wide base of experience with large-scale computations using Cartesian methods.
MGAERO, for example, adopts a component-based approach to complex geome-
tries[51,52]. Similar approaches have been pursued by various other groups[58,3] and
will be discussed in §1.3.3.

The cut-cells which are necessarily present in Cartesian discretizations present
unique problems in the implementation of accurate boundary conditions. While
these notes will discuss this topic in some detail, references [18], [17], [16], [32], [40],
[41], and [56] (among others) present additional insight into the issues involved.

The isotropic elements stemming from h-refinement of Cartesian hexahedra are well
suited to resolving flow structures in inviscid simulations. However, use of such ele-
ments to capture boundary layers and other stiff viscous phenomena would be
grossly inefficient[43,31]. Recently, a variety of authors have proposed alternate tech-
niques for extending inviscid Cartesian approaches to viscous flow[47,31]. Histori-
cally, the lack of a clear extension to viscous simulations has been a weak link and
the recently proposed avenues offer the possibility of further research.

1.3 Motivation for Cartesian Mesh Approaches
Arguments in favor of Cartesian approaches generally rely on claims of either
increased accuracy or their flexibility when applied to complex geometries. In this
section we present examples of these arguments while also discussing shortcomings
of the approach.

1.3.1 Accuracy of Difference Schemes on Uniform and non-Uniform Meshes
Away from cut-cell boundaries and mesh refinement interfaces, Cartesian methods
integrate the governing equations using a uniform, orthogonal discretization of
space. This guarantee of mesh quality suggests improved accuracy for a given differ-
ence scheme. Improved accuracy translates into lower discretization error for a given

− 4 −

1.3 Motivation for Cartesian Mesh Approaches

number of cells. This can also be interpreted as an efficiency claim, since it implies
that a smaller number of cells will be required to achieve a specified level of numeri-
cal accuracy.

A simple model problem demonstrates the basis for this claim. The Euler and
Navier-Stokes equations are modeled with the advection equation, and we examine
its behavior in a single dimension. Such simplifications are warranted since this
demonstration proceeds by induction. Rather than show that Cartesian approaches
have a particular advantage for scalar 1-D systems (which may or may not break
down in their extension to multiple dimensions and coupled systems) we intend to
show that even on the simplest 1-D mesh systems, ordinary difference schemes show
weaknesses on non-uniform meshes, and that these difficulties persist for systems
and in multi-dimensions1.

Consider the scalar advection equation with unit wave speed in a single dimension
over the interval from .

(1.1)

The simplest consistent discretization for this equation is Godunov’s method which
uses first order spatial derivatives and forward Euler time advancement. On a uni-
form mesh with a spacing of h and time step ∆t, this scheme may be written:

(1.2)

Figure 1-1 shows an irregular mesh for discussion. Generalizing the difference
scheme in eq. 1.2 to retain conservation gives:

(1.3)

1. The analysis in this section follows a similar presentation in Reference [13].

0 x 1≤ ≤

ut ux+ 0= 0 x 1≤ ≤

ui
n 1+

ui
n t∆

h
---- ui

n
ui 1�

n
�()�=

ii − 1

h

hihi-1

Figure 1-1: Nomenclature on a non-uniform mesh in 1-D.

ui
n 1+

ui
n t∆

hi
---- ui

n
ui 1�

n
�()� Qui

n= =

− 5 −

1.3 Motivation for Cartesian Mesh Approaches

We examine the scheme’s accuracy on non-uniform meshes by substituting in the
exact solution . The local truncation error (LTE) of the scheme at time tn+1 in
the vicinity of xi is the difference of the exact solution and the discrete representa-
tion in eq. 1.3; .

(1.4)

Taylor expanding for data in the neighborhood of xi gives:

(1.5)

where is the average mesh interval between i and i + 1, . Dropping
the higher order terms and converting spatial derivatives with eq. 1.1 gives an
expression for the leading terms in the truncation error expression.

(1.6)

If the mesh is smooth (i.e.) then eq. 1.6 becomes:

(1.7)

which implies that the method remains consistent on smooth meshes. Note, however,
that the first term on the right side of eq. 1.6 vanishes completely for uniform
meshes. Thus on non-uniform grids, the scheme will have greater local truncation
error than it would on an equivalent uniform mesh1.

Table 1.1 chronicles the results of a numerical experiment with the difference
scheme of eq. 1.3 using a Gaussian pulse initial condition integrated until time

while maintaining ∆t/h = 0.8. This experiment was conducted using a uni-
form mesh with N intervals and two meshes with intervals which were randomly
perturbed by 0.1h and 0.25h. Error is tabulated in measures of the L1 norm as com-

1. On non-smooth meshes the leading term is O(1) which implies that the method may become inconsistent when
integrating to a predetermined time. However, reference [92] has demonstrated that the method does manage to
remain consistent, albeit with substantially higher truncation error than on smooth or uniform meshes.

u x t,()

u xi tn 1+,() Qu xi tn 1+,() ∆t LTE⋅=�

∆t LTE⋅ u xi t
n 1+

,() u xi t
n

,()�
t∆

hi
---- u xi t

n
,() u xi 1� t

n
,()�[]+=

∆t LTE⋅ u xi t
n

,() ∆tut xi t
n

,()
∆t

2

2
--------utt xi t

n
,() � u xi t

n
,()�+ + +=

t∆
hi
---- u xi t

n
,() u xi t

n
,() hux xi t

n
,()�

h2

2
-----u

xx
xi t

n
,() �+ +

 �+

h h hi hi 1�+() 2Ú≡

LTE
h
h
--- 1�
 ux xi t

n
,() t∆

2
---- h2

2hi
-------�

uxx xi t
n

,()+≅

hi 1� hi O hi
2()�=

LTE O hi() O ∆t h+()+≈

t 0.8=

− 6 −

1.3 Motivation for Cartesian Mesh Approaches

pared to the exact solution. This table shows that the presence of the additional error
term on the right of eq. 1.6 increases the local truncation error by nearly 50% over
that of the uniform mesh for a 10% perturbation, and that a perturbation of 25%
essentially doubles the magnitude of the truncation error. Moreover, examination of
the column labeled “Uniform 1.25h” reveals that a uniform mesh with a 25% larger
average spacing consistently outperforms a non-uniform grid with only a 10% varia-
tion in cell size1.

When one admits discontinuous solutions, the question of accuracy becomes more
difficult to analyze directly. Nevertheless, results from references [63] and [93] indi-
cate that traveling discontinuities have smaller phase errors on regular meshes
where the shocks can relax into a discrete traveling wave.

1.3.2 Complex Geometry
The classification of cells as either “body-intersecting” or “flow field” has a unifying
effect within a Cartesian approach. It implies that the detail of an intersection is not
important to the mesh generation process and that topological information does not
play a role in the mesh generation scheme. Similarly, the method is not linked to a
specific representation of boundary surfaces. 3-D geometry is frequently specified
through CAD or Stereo Lithography (STL) data, trimmed NURBS elements, or com-
ponent triangulations. Assuming the existence of an appropriate routine for clipping
mesh cells against these datatypes, other details of the geometry specification
remain inconsequential.

Figure 1-2 demonstrates the degree of geometric complexity that can be routinely
considered by Cartesian mesh approaches. The example shows a Cartesian volume
mesh with 5.81M cells discretizing the space around an attack helicopter configura-
tion which includes armaments, powerplants, wing stores, night-vision equipment,

1. Data for this example were contributed by M.Berger, who presented similar results in Ref. [13].

Table 1.1. Accuracy of first-order scheme on uniform and non-uniform meshes1

of cells
N

% Error in

Uniform
(h)

Uniform
(1.25h)

10%
Perturbation

25%
Perturbation

20 13% 16% 18% 24%

40 7.2% 8.8% 9.7% 13%

80 3.7% 4.6% 5.1% 7.4%

160 1.9% 2.4% 2.7% 3.9%

L1

− 7 −

1.3 Motivation for Cartesian Mesh Approaches

avionics packages and other components. The complete configuration contains 82
separate components which were extracted from the CAD description to build the
model. This mesh was generated in about 5min and 20 seconds on a moderately pow-
ered engineering workstation (RISC R10000 CPU at 195Mhz). The only user inputs
required for computing this mesh were (1) the bounding box of the domain, and (2) a
target number of cells for the mesh generator. Figure 1-3 contains computed isobars
on this configuration resulting from an inviscid flow analysis (computed on a coarser
mesh with ~1.2M cells).

The example in Figures 1-2 and 1-3 was part of a study to optimize the shape of some
of the packages on the wetted surface of this configuration. Such studies often
require non-experts to run the mesh generation and flow solvers. The level of auto-

Figure 1-2: Upper: Cartesian mesh for attack helicopter configuration with 5.81M cells. Lower:
Close-up of mesh through left wing and stores.

− 8 −

1.3 Motivation for Cartesian Mesh Approaches

mation available with Cartesian approaches makes them particularly attractive for
this type of analysis and optimization.

1.3.3 Surface Modeling Requirements
Given sufficient time and expertise, configurations like the helicopter in Figure 1-2
could also be analyzed with unstructured or even multi-block or overset structured
solvers. In fact, unstructured methods may even produce tetrahedral meshes of sim-
ilar or perhaps better quality than the Cartesian mesh shown. Such methods, how-
ever, generally have substantially higher surface modeling requirements, and with
most automatic mesh generation schemes, surface modeling is typically the most
(wall-clock) time consuming step in the process[1].

Surface modeling for unstructured (tetrahedral) methods plays two roles. First an
input triangulation must be generated and constrained to the outer-moldline of the
geometry. In addition, if two components are in close proximity to each other, their
surface triangulations must have commensurate length scales and node distribu-
tions to permit a quality tetrahedralization of the space in between. Secondly, when
mesh adaptation is applied, the volume or surface mesher must be able to insert new
sites on the exterior surface of the boundary without creating invalid elements.
These new sites must also conform to the actual surface. Generation of this con-
strained surface triangulation is non-trivial, especially when one considers that the

Figure 1-3: Isobars resulting from inviscid flow analysis of attack helicopter configuration computed
on mesh with 1.2M cells

− 9 −

1.3 Motivation for Cartesian Mesh Approaches

geometry may originally be specified via CAD data, loftings, natural/trimmed
NURBS, grid patches, or a variety of other formats. Edges in this triangulation must
follow wing leading and trailing edges, creases in the geometry, and especially inter-
sections between components. To preserve such features, edge swaps must be
restricted and constraint edges must be identified.

In unstructured mesh generation, creating such a constrained surface triangulation
is typically the most time consuming and (user) interactive step in the process. More-
over, when a component is moved or reshaped, new intersections must be extracted,
the surface mesh must be recomputed (at least locally) and a new volume mesh must
be generated. If the surface triangulation is computed with a pre-processor or a com-
mercial software package, then the real geometry will be unavailable for use by the
adaptation routines, making boundary site insertion a clumsy process.

By contrast, the surface modeling requirements of Cartesian methods are substan-
tially less intensive. If one works directly with CAD or NURBS, libraries exist for
clipping Cartesian cells against these data (DTNURBS[35], ParaSolids[65], etc.).
Alternatively, one may triangulate the components of a configuration independently
with a pre-processor. Since components are free to intersect and overlap, there is no
need to constrain component triangulations to intersection curves. In addition there
is no need for length scales on neighboring component triangulations to match since
the surface description is de-coupled from the volume mesh. Component motion or
deformation may then be pre-programmed which permits macroscopic control of sev-
eral cases without user intervention.

1.3.4 Asymptotic Complexity
One final attractive aspect of Cartesian approaches is that mesh generation time can
scale linearly with the number of cells for a given configuration. Figure 1-4 shows a
scatter plot of number of cells vs. CPU time for a series of meshes surrounding a dou-
ble teardrop configuration. The solid line fitted to the data is the result of a linear
regression. The line has a slope of 4.01x10-5 seconds/cell and a correlation coefficient
of 0.9997. This equates to about 24950 cells/second or 1.5Mcells/minute on a desktop
workstation (RISC R10000 at 195Mhz). The strong correlation to a straight line
demonstrates that the mesh generator produces cells with linear asymptotic com-
plexity, which is optimal for any method that operates cell-by-cell.

− 10 −

1.4 Cut-Cell Cartesian Methods

The result in Figure 1-4 is not necessarily surprising since Cartesian grids have a
prescribed connectivity which is defined using only local data. Site (vertex) locations
are predetermined by the bounding-box of the domain and the allowable number of
refinements.

The result of linear complexity (O(N)) compares favorably with the asymptotic per-
formance of popular 3-D Delaunay approaches for generating unstructured tetrahe-
dra. The algorithms of Bowyer[22] and Watson[90] have best case complexity of

and respectively. In reference [9] Barth argues that since the maxi-
mum numbers of tetrahedra that can be generated from N sites is N2, these methods
have a worse case bound of O(N2). Typical real world running times for efficiently
written Delaunay algorithms fall between these bounds.

1.4 Cut-Cell Cartesian Methods
Before generalization to curvilinear coordinates, the first efforts in CFD relied on
structured Cartesian methods. Most early approaches focused on the accuracy of
spatial operators, and the efficiency of time advancement schemes. Typically, they
did not allow mesh embedding and frequently used a “staircased” description of any
geometry in the flow. By comparison with these early implementations, the advent of
curvilinear meshes represented a major advancement in the accuracy of CFD meth-

103 104 105 106 107
Number of Cells

1

10

100

C
PU

 ti
m

e
(s

ec
on

ds
)

Timing Data
y 4.01

5�
×10 x 0.18+=

Figure 1-4: Scatter plot of mesh size vs. computation time for a double-teardrop configuration. RISC
R10000 CPU, 195Mhz.

O N5 3Ú() O N4 3Ú()

− 11 −

1.4 Cut-Cell Cartesian Methods

ods. While some commercial software still uses these non-adapted Cartesian grids
with staircased geometry (often aimed at “under the hood” automotive applications)
the focus of Cartesian technology development in the past decade has been almost
exclusively on adaptive techniques with cut-cell boundaries. The “Cartesian meth-
ods” referred to by these notes belong exclusively to this latter class of approaches. It
is precisely the ability to change mesh scale through adaptation and preserve bound-
ary fidelity through cut-cell implementations which make Cartesian methods com-
petitive with block-structured and unstructured (tetrahedron-based) methods. This
section presents a brief overview of various Cartesian approaches being actively
developed within the research community.

1.4.1 Structured Mesh Cartesian Approaches
Most modern structured Cartesian approaches permit local mesh adaptation
through the use of embedded grid patches. The most popular structured approach is
currently the Adaptive Mesh Refinement (AMR) strategy pioneered by Berger[19,14].
Since its development AMR has been successfully applied to the Navier-Stokes equa-
tions, reacting flow problems, incompressible flows, time dependent problems and a
variety of other equation sets[5,66,6,59,74]. The technique has also been applied on cur-
vilinear meshes with embedded patches[15,68]. This presentation follows closely that
in reference [13].

In essence, AMR is a hierarchical inter-mesh communication scheme. It relies on
block-structured, locally refined mesh patches to increase the resolution of an under-
lying structured coarse grid. Mesh patches at different levels are stored in a tree-
based hierarchy. The method begins with an estimate of the local truncation error
within each cell of a coarse grid patch. Cells with high error are then tagged for later
refinement. Rather than divide each individual cell, however, the tagged cells are
organized into rectangular grid patches which usually contain hundreds to thou-
sands of cells per patch. The 2-D example in Figure 1-5

1
illustrates this blocking pro-

cess on an example where a set of tagged cells around a circle are organized into 8
refined grid patches.

Since it attempts to create rectangular regions, the blocking process necessarily
includes some cells not tagged for refinement. Thus, its natural to examine the effi-
ciency of the blocking strategy. Typically 70% of cells in grid patches are tagged, this
implies that the blocking process results in an “overhead” of 30%. Nevertheless,

1. The sketch in Figure 1-5 is modeled after [76].

− 12 −

1.4 Cut-Cell Cartesian Methods

advocates of the approach are quick to point out that entire mesh patches may be
completely specified with less than 20 words of storage per grid. Thus, total memory
is still more compact than the 30-50 words-per-cell typical of unstructured or octree
based adaptive schemes. When one considers that a typical three dimensional grid
system may have thousands of embedded patches, the memory efficiency of AMR
becomes obvious. For example, all cell geometry in a domain with 210patches would
require only 80Kb (with 32-bit data), and may uniquely describe millions of mesh
cells. This is far less memory than even the most efficient unstructured (cell-by-cell)
approaches described in the literature[2].

AMR for Transient Flow Simulations
AMR has been used extensively in transient flow computations. In the solution of
time dependent problems, AMR easily permits sub-cycling in time on finer mesh
patches. It also allows grids to refine and coarsen without modifying the kinds of
cumbersome 1-D cell arrays or connectivity trees common in octree or unstructured
Cartesian approaches.

An AMR scheme for time dependent flows may be sketched as follows:

1. time step controller and integration
2. inter-grid communication

2.a. Provide boundary conditions to interior grids
2.b. Ensure conservation at patch interfaces
2.c. Initialize solution on new grid patches

3. Cell-based truncation error estimation
4. Organize tagged cells into rectangular blocks
5. Generate new patches
6. Return to 1

0.8

0.6

0.4

0.2

0.0

−0.8

−0.6

−0.4

−0.2

−1
−1 −0.5 0.0 0.5 1.0

1Coarse mesh cells

Cells
tagged for
refinement

Outline of new
grid patch

Figure 1-5: AMR mesh blocking for cells tagged around a circular region in 2D. Left: Schematic of
cells tagged for refinement with patch outlines indicated by heavy lines. Right: sample calculation

from Reference [76]

− 13 −

1.4 Cut-Cell Cartesian Methods

Figure 1-6 shows an example of a 2-D time dependent result for a shock reflection
problem from a double ramp using AMR.

Error Estimation for Adaptation with AMR
Since they operate on a series of embedded meshes, AMR approaches lend them-
selves to direct truncation error estimates for controlling mesh adaptation. The pos-
sibility of performing direct Richardson extrapolation based error estimation is
particularly attractive since it offers firm mathematical basis and thus avoids some
of the ambiguities associated with many of the more ad-hoc “feature detection” type
schemes discussed in the literature.

The overview presented below assumes that the method has the same nominal order
of accuracy in both space and time. This restriction can be lifted by treating spatial
and temporal operators separately.

Consider again the scalar advection equation defined on a unit domain in 1-D (eq.
1.1). Centered spatial differencing with Lax-Wendroff time advancement yields a
scheme with second order accuracy in both space and time.

(1.8)

is the discrete approximation to the exact solution at and time
. The local truncation error at time is then:

Figure 1-6: Density contours for a time dependent shock reflection from double ramp using
AMR on Cartesian meshes, mesh patch outlines are shown. (reprinted from [13] with permission).

ui
n 1+

ui
n t∆

2h
------ ui 1+

n
ui 1�

n
�()�

t
2

∆

2h
2

--------- ui 1+
n

2ui
n

� ui 1�
n

+()+ Qhui
n= =

ui
n u x t,() xi i h⋅=

tn n ∆t⋅= tn 1+

− 14 −

1.4 Cut-Cell Cartesian Methods

(1.9)

Assuming yields spatial and temporal error of the same order. After
two time steps, the leading term of the truncation error expression is doubled.

(1.10)

Equation (1.10) for the local truncation error may be re-computed on a coarser mesh
created by removal of every other grid point in the fine mesh. Defining

and permits us to define Q2h as the discrete Lax-
Wendroff operator on the coarsened mesh. Assuming ∆t/h remains the same as on
the fine grid, the local truncation error of the coarser mesh is:

(1.11)

Comparing the average discrete solution at xi and xi + 1 after two time steps
with the solution on the coarse mesh after one time step

yields a difference which is proportional to the leading term in the truncation error
expression on the fine mesh.

(1.12)

In eq. 1.12 the difference of discrete operators on the left produce a result which is
precisely proportional to the leading terms on the right side of eq. 1.9, thus, by com-
paring solutions on the two telescoping meshes we have a Richardson type measure
of the actual truncation error.

The second term on the left of eq. 1.12 can be obtained by calling the integrator for
one step on the coarse grid, similarly the Qh operator is evaluated on the actual Car-
tesian mesh itself. Cells with truncation error measures above some (statistically
determined) threshold may then be tagged for refinement as in Figure 1-5.

The Taylor expansions in eq. 1.9 imply that this estimator is actually only appropri-
ate for smooth data. The derivation has also been extended for application to solu-
tions with discontinuities. Reference [13] presents an overview of this extension.

u xi t
n 1+

,() Qhu xi t
n

,()�
∆t

3

6
--------uttt

∆th
2

6
-----------uxxx �+ +=

∆t Const h⋅=

u xi t
n 2+

,() QhQhu xi t
n

,()� 2
∆t

3

6
--------uttt

∆th
2

6
-----------uxxx �+ +

 ⋅=

xi 1 2Ú+

xi xi 1++

2
-------------------------≡ ui 1 2Ú+

ui ui 1++

2
-------------------------≡

u xi 1 2Ú+ t
n 2+

,() Q2hu xi 1 2Ú+ t
n

,()� 8
∆t

3

6
--------uttt

∆th
2

6
-----------uxxx �+ +

 ⋅=

Qh
2u xi tn,() Qh

2u xi 1+ tn,()+() 2Ú

Qh
2
u xi t

n
,() Qh

2
u xi 1+ t

n
,()+()

2
-- Q2hu xi 1 2Ú+ t

n
,()� 6

∆t
3

6
--------uttt

∆th
2

6
-----------uxxx+

 ⋅≈

− 15 −

1.4 Cut-Cell Cartesian Methods

1.4.2 Octree/Quadtree Based Cartesian Methods
Tree-based data structures have long been a mainstay of hierarchical storage sys-
tems in computer science. Binary trees were originally created for data sorted on a
single key, and are examples of linear data structures. While 1-D data (like a dictio-
nary) may be maintained in a typical binary tree, spatial data in higher dimensions
requires searching on multiple keys. Quadtrees and octrees are two examples of spa-
tial data structures1. A variety of classic texts discuss efficient algorithms for main-
taining multi-keyed data with an implied hierarchical relationship[49,77,37].

The nested nature of h-refined Cartesian meshes makes them good candidates for
these types of data structures. Two-to-one h-refinement produces two children in 1-
D, four children in 2-D, and eight in 3-D (or 2d in d dimensions). This gives natural
mappings to binary, quad- and octree approaches for Cartesian meshes. Mesh con-
nectivity information is implied by a tree’s logical structure. Additionally, the geome-
try of a Cartesian cell is completely specified by its location in the tree and the
geometry of the root cell. Thus, these data structures can provide not only local mesh
topology, but also cell geometry as well.

Terminology
Tree structures mimic more the form of “family trees” than that of trees in nature. In
the most fundamental implementation, a regional quad- or octree starts from a sin-
gle root node which covers the entire computational domain. The actual cells in a
Cartesian mesh make up the leaves of the tree. The term node generically refers to
any storage location in the tree (root, leaf, etc.). Continuing with this metaphor,
genealogical terms are used to characterize the relationship between cells at various
levels of refinement within an adaptive grid. For example, h-refinement of a cell in a
3D mesh creates eight children. Each of these usually retains a pointer (or link) back
to its parent. Similarly, parent nodes contain links to the addresses of their children.
These pointers usually follow some fixed ordering scheme so that a child’s position is

1. A partial list of useful spatial data structures includes (at least); binary trees, k-d trees, point optimized
quad/octrees, regional quad/octrees, bucket quad/octrees, alternating digital trees, dynamically quantized pyra-
mids, range-trees, kdb-trees, R-trees, hB-trees, MX-trees, bin-trees, binary-space-partitioning trees, polygon
trees, sector trees, 2n-trees, sequential and inverted lists, linear and spiral hashtables, priority search trees, and
a variety of PR-trees, see Ref.[77].

− 16 −

1.4 Cut-Cell Cartesian Methods

uniquely specified with respect to its siblings. Figure 1-7 shows one example of such
an ordering for a single parent node and its four children in a 2-D quadtree mesh.
The quadtree shown here is properly referred to as a “regional quadtree”, since each
node in the tree corresponds to a region in the domain[77]. Each node in the tree may
be pointed to by only one parent node, and only the root has no parent. Leaf nodes

Figure 1-7: Parent-child relationship in a Cartesian mesh using a regional quadtree data structure.
Shown also is the corresponding sub-tree and a simple scheme for array based storage.

Nl

N1
l 1+

N3
l 1+

N2
l 1+

N4
l 1+

Address Node Parent
Child

1
Child

2
Child

3
Child

4

A0 0 A1 A2 A3 A4

A1 A0 0 0 0 0

A2 A0 0 0 0 0

A3 A0 0 0 0 0

A4 A0 0 0 0 0

N0
0

N1
1

N2
1

N3
1

N4
1

N l

N1
l 1+ N2

l 1+ N3
l 1+ N4

l 1+

Figure 1-8: Quadtree mesh, regional quadtree structure and simple array based storage scheme.

Address Node Parent
Child

1
Child

2
Child

3
Child

4

A0 0 A1 A2 A3 A4

A1 1 A0 0 0 0 0

A2 A0 A5 A6 A7 A8

A3 3 A0 0 0 0 0

A4 A0 A9 A10 A11 A12

A5 2 A2 0 0 0 0

A6 5 A2 0 0 0 0

A7 6 A2 0 0 0 0

A8 7 A2 0 0 0 0

A9 4 A4 0 0 0 0

A10 8 A4 0 0 0 0

A11 9 A4 0 0 0 0

A12 10 A4 0 0 0 0

N0
0

N2
1

N4
1

Tree structure depth

0

1

2

1
2 5

6 7

3
4 8

9 10

Adapted Cartesian Mesh

1

2 5 6 7

3

4 8 9 10

N0
0

N4
1N2

1

− 17 −

1.4 Cut-Cell Cartesian Methods

are distinguished by the fact that they have no children. Figure 1-7 also shows a sim-
ple 1-D array-based storage scheme for mapping a regional quadtree tree to memory.
Many programming languages with flexible datatypes permit more elegant repre-
sentations of tree structures but the simple scheme shown is sufficient for this dis-
cussion.

Figure 1-8 presents a slightly more complex example for a quadtree mesh with three
levels of tree nodes and 10 leaf nodes for the cells in the computational domain. In
this example, tree nodes are identified with the notation where l is the depth of
the node in the tree and c is the child number of a node on its parent’s child list. The
addresses in this example are sorted by depth for clarity, but since the address of the
children are stored directly, the tree can be kept in any order (including many sorted
orders which can be optimized to improve instruction cache performance on cache-
based CPU’s). We note that the geometry of the root and a node’s logical position in
the tree uniquely define each Cartesian cell in the domain

Connectivity Queries
One of a tree’s main functions is to provide information about a cell’s logical relation-
ship to other cells in the domain. As an example, consider the implementation of a
cell-centered flow solver on the 2-D mesh shown in Figure 1-9. Cell-centered storage
of state data implies that each cell will exchange flux with its nearest face-neighbors.
The figure displays the tree-traversal paths for locating the north face neighbors of
cells 1, 3, and 5. Notice that while cell 1 need only query its parent to get to its north
neighbor (cell 2), cell 3 must return all the way back to the root node to find cell 4
across its north face.

This example shows both the strengths and weaknesses inherent to tree-based
approaches. The tree structure is relatively compact, and provides virtually all mesh
connectivity information while simultaneously permitting direct computation of geo-
metric properties. Geometry and cell size need not be stored explicitly. In addition,
adaptation is relatively easy to implement since the structure is extensible through
division of leaf nodes. However, this compactness and flexibility come at the expense
of tree traversal overhead.In an effort to reduce this overhead, most tree-based
methods use some local neighborhood storage for leaf nodes. For example, one may
pre-compute all the distance-one neighbors to a mesh cell to avoid the look-up over-
head associated with the connectivity queries in Figure 1-9. This then becomes a
case of trading off execution speed for memory usage. Reference [70] reports that 10-

Nl
C

− 18 −

1.4 Cut-Cell Cartesian Methods

20% of the CPU time for a 2-D quadtree-based flow solvers is dedicated to tree tra-
versal. Typical implementations of Cartesian flow solvers on 3-D octree meshes usu-
ally store 30-50 words per cell.

Figures 1-10 and 1-11 display flow examples computed with octree and quadtree
meshes. Figure 1-10 shows surface isobars and mesh-cuts from a business jet config-
uration computed by Charlton and Powell[25]. The mesh-cut through the aircraft
symmetry plane provides an indication of the mesh resolution used in this simula-
tion. This configuration was computed at α = 0°, and M∞ = 0.87. The complete mesh
around the aircraft consisted of 583000 cells, among which 182000 actually inter-
sected the wetted surface of the geometry.

Figure 1-11 shows an unsteady 2-D result computed on a quadtree mesh[70,12]. Sev-
eral snapshots from the time history of the computation are included. The example
illustrates the progress of a jet-powered projectile penetrating a deformable shell
structure in a quiescent stream. In this example, a new mesh is generated at subse-

1

2

3

4

5

6

12 34

56

Tree structure depth
0

1

2

3

4

Adapted Cartesian Mesh

Traversal-paths for finding neighbors

1 → 2 5 → 63 → 4

12 34

56

Figure 1-9: Tree-traversal paths for locating the north face-neighbors of cells 1, 3 and 5.

− 19 −

1.4 Cut-Cell Cartesian Methods

quent time steps to track the progress of the geometry and flow as both the body
motion and flow evolves.

Figure 1-10: Isobars and mesh cuts on a business jet configuration computed with an octree based
approach (reprinted from Ref. [25] with permission).

Figure 1-11: Density contours and adapted quadtree grids showing a time history of a projectile
penetration problem (reprinted from Ref. [70] with permission).

− 20 −

1.4 Cut-Cell Cartesian Methods

1.4.3 Unstructured Cartesian Approaches

Despite the apparent oxymoron, many Cartesian implementations rely on fully
unstructured data structures. In this context, “unstructured” refers to the fact that
hierarchical information is not used to infer mesh topology. Instead, connectivity is
explicitly stored. Data structures from finite element methods or Computational
Geometry are employed in much the same way that they are for unstructured
approaches on tetrahedral meshes. Such structures provide more flexibility than
patch-based or even tree-based architectures since they easily incorporate the possi-
bility of anisotropic (directional) refinement of Cartesian cells.

Figure 1-12 shows a few examples of directional refined Cartesian cells. Anisotropic
refinement permits 1:2 or 1:4 division of hexahedral cells, and permits local modifica-
tion of the cell aspect ratio in response to flow features or geometry. “Counting argu-
ments” brought up by recent research with large computations indicate that
anisotropic cell division can become extremely important in three dimensions[3].
This is especially so when analyzing geometries with high aspect ratio components
(e.g. flaps, flap-vanes, spoilers, etc.). Some such results will be discussed in Section 3
of these notes.

Data Structures
A variety of local data structures for describing mesh connectivity exist in the litera-
ture[11,9]. Figure 1-13 depicts a few of the more common ones used in CFD and com-
putational geometry. Vertices in the domain are generally assumed to be uniquely
defined, and the structures “point” to vertices either directly (using pointers) or by
an indexing scheme.

One of the most frequently encountered structures lists the cell-to-vertex connectiv-
ity of an element (Fig. 1-13.a). This is usually referred to as the “standard” finite-ele-
ment structure. A variation of this is to list the cell-to-edge (or cell-to-face)

Figure 1-12: Anisotropic (directional) division of Cartesian cells.

− 21 −

1.4 Cut-Cell Cartesian Methods

connections as shown in 1-13.b. This structure is often found in planar or manifold
triangulation schemes, and is sometimes used in tetrahedral mesh generators. These
two structures tell an element about itself, that is, they provide communication
within an element, or about the extent of an element (D0 communication). By them-
selves, they provide no information about mesh connectivity. They can, however, be
used for scatter and accumulate operations of the type required in cell-vertex CFD
schemes like that found in reference [62]1.

Many planar graph algorithms make use of the edge structure like that shown sche-
matically in frame (c) of Figure 1-13. The edges may be directed (as in the sketch)
and may include links to the cells on either side. This structure is fundamentally dif-
ferent from the element-based structures since it straddles mesh elements. It there-
fore provides a method for direct communication between two adjacent (D1)
elements. When the cell-to-edge structure is used in combination with an edge struc-
ture, one can rapidly traverse a local neighborhood on an unstructured mesh. Since
it lists an edge’s origin and destination vertices, the edge structure also provides
nearest-neighbor connectivity on the dual of a planar graph. Mesh duals are a com-
mon construct in node-based CFD algorithms where control volumes are constructed
around the vertices of the physical mesh (see for ex. Ref.[10]). Researchers have
exploited the local connectivity offered by edge structures to show that various dis-
crete operators may be cast as a series of edge-based operations. Reference [9]
reviews the use of edge formulas for constructing discrete differentiation, Laplacian,
and Hessian operators using dual control volumes on a planar graph.

For 3-D cell-centered schemes, the face structure (Fig.1-13.d) provides much of the
same functionality as the edge structure gives to node-based methods. This relation-

1. In cell-vertex schemes, updates are computed within each mesh cell, these updates are then scattered to the
cell’s vertices using a distribution process. When the cell loop is complete, a complete set of pointwise updates
have accumulated at the mesh vertices.

Figure 1-13: Some common data structures for polyhedral tessellations in two and three

a. cell-to-vertex b. cell-to-edge c. edge d. face

e1+

e0+

e

e0−

e1−

p0 p1

e. winged-edge

− 22 −

1.4 Cut-Cell Cartesian Methods

ship is strongly linked to the property of duality. If one constructs a dual mesh by
connecting the nearest neighbor centroids of a 3-D arrangement of Cartesian cells,
there is a one-to-one correspondence between edges in the dual and faces in the orig-
inal mesh. Every edge in the dual pierces one face of the original mesh. Thus, the
edge structure for the dual is precisely a face structure for a cell-centered Cartesian
mesh.

Another popular data structure for traversing unstructured meshes is the winged-
edge structure in Figure 1-13.e. Originally developed by Baumgart[11] for work in
computer vision, the structure links an edge with its origin and destination vertices,
the two polygons on either side of the edge, and four edges e0± and e1±. This struc-
ture is particularly useful for storing polygonal faces of unknown degree, since one
may start at any edge on a polygon, and traverse around its edge following the e+ or
e− loops. When a 3-D Cartesian cell intersects the surface triangulation of a body, its
cut faces constitute polygons of an unknown degree. The winged-edge structure pro-
vides a simple way for traversing the perimeter of these cut faces.

The memory requirements for unstructured data storage are generally higher than
that for quad/octree approaches. Typical implementations use about 30-100 words-
per-cell. However, recent research results have demonstrated that this is not neces-
sarily the case. By tailoring unstructured formats for Cartesian meshes, memory
usage can be substantially reduced. For example, the mesh generator in reference [2]
uses only about 9 words-per-cell (neglecting storage of boundary geometry). Section 3
of these notes presents a compact data structure for storing all geometry and cell-to-
vertex pointers in 96 bits of memory (3 words on 32-bit architectures).

− 23 −

1.4 Cut-Cell Cartesian Methods

Results from Unstructured Implementations
Results using unstructured Cartesian mesh approaches are widely reported in the
literature[58,3,2,56]. Figure 1-14 shows the adapted Cartesian mesh and computed

isobars for an ONERA M6 wing example at α = 3.06°, and M∞ = 0.84. The mesh
shown contains approximately 1.2M cells and was generated by 9 successive h-
refinements of an initial coarse grid.

The High Wing Transport (HWT) example shown in Figure 1-15 contains an adapted
Cartesian mesh over a complete transonic transport aircraft. The mesh in this exam-

Figure 1-14: Adapted mesh, and computed isobars for inviscid flow over an ONERA M6 wing at
α = 3.06°, and M∞ = 0.84, computed using an unstructured representation of the Cartesian mesh.

Figure 1-15: Adapted mesh, and computed isobars for inviscid flow over a High Wing Transport
(HWT) configuration. The unstructured Cartesian mesh contained 2.9M cells with 10 adaptations.

− 24 −

1.4 Cut-Cell Cartesian Methods

ple contains 2.9M cells, and the figure shows a close-up of the flow structure between
the fuselage and inboard nacelle.

The two examples in Figs.1-14 and 1-15 combine unstructured data storage with a
component-based surface modeling for complete aircraft geometries. Surface trian-
gulations are used to describe the component geometry as discussed in §1.3.3. These
component triangulations were generated from CAD and are permitted to overlap
and intersect. The result in Figure 1-16 uses this same approach to model a HWT
with its high-lift system deployed resulting in a total of 18 components. The compo-
nent triangulations used in this example describe the geometry using a total of over
700000 triangles, and 16 of the components intersect. The mesh shown (at selected
cuts) includes 1.65M cells and the inset frame shows the resolution available
through the flap system. In all, 10 levels of cells comprise the final mesh. Adaptation
in this example was triggered by a simple criterion examining the undivided first dif-
ference of density. At a low subsonic Mach number and a moderate angle of attack,
this indicator responded primarily to the suction peaks on the leading-edge-slat and
main element, as well as the inviscid jet through the flap system. Despite the fact

− 25 −

1.5 Rapid Mesh Traversal and Searching

that this simulation is inviscid, the sharp outboard corner of the flap has correctly
spawned a flap vortex which is evidenced by a stream ribbon in the figure.

1.5 Rapid Mesh Traversal and Searching
Having completed a brief overview of various approaches for Cartesian methods, this
section concludes by presenting some geometric algorithms which are central to the
efficient implementation of Cartesian methods aimed at realistically complex geome-
try. Subsequent sections of these notes make extensive use of the algorithms in this
section for searching and mesh traversal. This infrastructure is important since a
clumsy approach to these fundamental operations will seriously degrade the asymp-
totic performance of many of the algorithms presented later.

A component-based description of a configuration specifies the complete geometry as
the set of all its boundary components, Bk. For a configuration Ω, with K components,
this relationship may be formalized by:

Figure 1-16: HWT example with high-lift system deployed. The mesh contains 1.65M cells at
10 levels of refinement. The mesh is presented by cutting planes at 3 spanwise locations and

the cutting plane on the starboard wing is flooded by isobars of the discrete solution.

− 26 −

1.5 Rapid Mesh Traversal and Searching

(1.13)

The individual components in Ω may come from a variety of sources, including CAD,
STL data, IGES[75] descriptions, etc. In all cases, it’s likely that each component is
itself described by a collection of geometric primitives (e.g. CAD data for a fuselage
may be a collection of trimmed NURBS, a wing may be specified as triangulated STL
data etc.). Thus, the kth component, Bk, will consist of nk primitive objects. N, the
total number of primitive objects in the configuration is then:

(1.14)

If this configuration is contained by a Cartesian mesh, let M denote the total number
of hexahedral cells which actually intersect the wetted surface of the geometry.

In generating the mesh, and setting up numerical boundary conditions, each cut cell
needs to be intersected against the configuration. There are M cut-cells, and N
objects in the configuration. Thus, without special care, the computational complex-
ity of the intersection operation will be . Since both the surface geometry
and adaptive grids typically cluster cells near rapidly varying geometry, N and M are
generally of the same magnitude. Thus, this result implies quadratic complexity.

The HWT configuration in Figure 1-16 had 700000 triangles describing the geome-
try, and just over 600000 cut Cartesian cells in the computational mesh. Clearly, an

exhaustive test on problems of this magnitude would be out of the ques-
tion. What is required is an operator with better asymptotic performance, which
returns only the short list of triangles that can potentially intersect each target cut-
cell. Since the objects returned by this operator must be geometrically close to a
given target cell, the process of forming this list is referred to as a proximity query.

Efficient proximity testing is an important part of the infrastructure in the design of
any algorithm targeted at complex geometry and high-resolution. Such problems will
necessarily contain many geometric components and many cells in the computa-
tional domain, thus good asymptotic behavior is a primary concern. This section
reviews a spatial data structure which is particularly well suited to the task of rap-
idly locating finite sized objects in the neighborhood of a given target. Moreover, it is
general enough to equivalently handle a variety of primitive object types, including
triangles, NURBS and other entities.

Ω B1 � Bk � BK, , , ,{ }=

N nk
k 1=

K

∑=

O N M⋅()

O N M⋅()

− 27 −

1.5 Rapid Mesh Traversal and Searching

A second important algorithm involves the efficient traversal of an unstructured col-
lection of objects of the same type in order to propagate some property to a cell’s local
neighborhood. For example, in a Cartesian mesh, we may need to visit all Cartesian
cells which are within the interior of a given component (to delete or mark them).
Since the component may be irregularly shaped, it would be expensive to exhaus-
tively check each Cartesian cell for containment. Instead, it may be more efficient to
first find one cell which is inside and then quickly mark that cell’s neighbors with the
same local property (e.g. “is inside”), provided that they pass some simple local test
(like “is not intersected”). Such painting algorithms are immensely powerful in
reducing the number of expensive tests required to classify a long list of objects,
since they quickly propagate a result to a region of the mesh without having to inde-
pendently test each cell.

Both of the algorithms presented in this section are general geometric tools with a
myriad of uses outside the specific topic of Cartesian methods. They are common
algorithms in computational geometry and are applicable to unstructured and struc-
tured mesh generation, finite element modeling, and domain decomposition.

1.5.1 Proximity Queries
The Alternating Digital Tree (ADT)[20] is a spatial data structure that is particularly
well suited to searching (possibly) heterogeneous collections of objects. It attains this
generality by abstracting each specific geometric entity with a set of uniquely
defined keys which do not depend on the details of an object’s construction. It uses
these keys to position the object in a binary tree. Since the objects are stored using
keys which are not simply physical space coordinates, the method may be classified
as a hyperspace search technique[77].

Partitioning within the Search Space
Before examining how the tree is used to return an object list, first consider its con-
struction using point data from a predetermined point set. An exhaustive search of N
points is one which checks each point in the set against the search criteria. Obvi-
ously, such a procedure has linear complexity since searching through a set of 2N
points will take twice as long. A host of techniques exist to search such a point set
with O(log N) complexity. Included among these are the regional quad/octree struc-
tures from §1.4.2 and many others detailed in the literature[77,49,21,79]. However, the
problem is considerably more complicated when one attempts to search over a set of
discrete, finite-sized objects. For example, if one uses a regional quadtree to store two

− 28 −

1.5 Rapid Mesh Traversal and Searching

dimensional objects, special procedures will be necessary to handle the cases where
objects cross partition boundaries. The ADT was designed specifically for these types
of searches.

Following reference [20], we introduce the ADT by examining its partitioning of a 2-
D hyperspace defined by the first and second coordinates of a two-dimensional point
set. If Q is the set of points to be searched, we can define the minimum and maxi-
mum position vectors, a1 and b1, of this set by a componentwise application of the
min and max operators to all the points in the set. Using n as a running variable to
sweep over the N elements in the set, and the superscript j to sweep over the spatial
directions (here d = 2):

(1.15)

Since [a1, b1] are the minimum and maximum coordinate limits of the entire data set
Q, all the points in the set are contained by the region [a1, b1] The subscript
()1indicates that the region [a1, b1] corresponds to tree-node 1. As shown in
Figure 1-17, this region is the root of the binary tree which represents the ADT in a
hyperspace spanned by the components of a1 and b1. We now begin bisecting this
hyperspace with planes normal to the coordinate axes, alternating the direction of
the partitioning plane at each level in the binary tree.

As a result of this cyclic bisection process, if a tree node k, is at a depth m in the tree,
then its partition, P(k) is perpendicular to the jth coordinate axis, where j is given by:

j = 1 + m % d (1.16)

a1
j min Q1

j � Q, , n
j
� Q, , N

j
()= j 1 � d, ,{ }∈

and

b1
j max Q1

j � Q, , n
j
� Q, , N

j
()= j 1 � d, ,{ }∈

1 1

32

depth
partition
direction

0

1

2

3

x1

root

x2

x1

a1

b1 b3b2

a3a2

Figure 1-17: The relationship between partitions of the search space and levels of the binary ADT
Partition directions alternate over the keys of the search space. (following Ref.[20])

x1

x2

P(1)
P(2) P(3)

− 29 −

1.5 Rapid Mesh Traversal and Searching

where the mod operator “%” takes the integer remainder of the integer division of its
arguments, .

Just as the first node corresponds to the root of the tree, [a1, b1], each subsequent
subdivision uniquely identifies a region of the hyperspace with a node on the tree. In
general, the kth node corresponds to the region [ak, bk] as shown in Figure 1-17. Sub-
dividing this region with a partition normal to the xj axis and located at xj = P(k)
generates a child on the right and one on the left . The regions cov-
ered by these children are determined by that of the parent node and the location of
the partition plane. The components of the left child are1:

and when i = j, (1.17)

Similarly, the components of the right child are:

and when i = j, (1.18)

where j is determined by the depth of node k using eq. 1.16.

In its original form, partitions for the ADT were chosen by geometrically bisecting
the point set and the resulting sub-regions[20]. For example, if the kth node covers the
region [0, 1] in the jth direction, the partition P(k) is placed at xj = 0.5. However,
since the points may not be evenly distributed, we have chosen to logically bisect the
hypercube spanned by each node to improve the balance of the ADT. Thus, if a
branch in the tree corresponds to a partition plane normal to the jth axis, we sort the
data in the node atop that branch using the jth coordinate as a key. Then one may
locate the partition at a position that corresponds to the median location in this
sorted list, assigning half of the list to each child. This partitioning strategy ensures

1. Its helpful to refer to Figure 1-17 when following eqs.1.17 and 1.18.

m d÷

akR
bkR
,[] akL

bkL
,[]

akL

i
ak

i
=

bkL

i
bk

i
= i 1 � d, ,{ } and i j≠()∈∀

akL

j
ak

j
=

bkL

j
P k()=

akR

i
ak

i
=

bkR

i
bk

i
= i j 1 � d, ,{ } and i j≠()∈,()∀

akR

j
P k()=

bkR

j
bk

i
=

− 30 −

1.5 Rapid Mesh Traversal and Searching

that the left and right children of each node contain the same number of objects.
Therefore, the tree remains balanced, even when the data is non-uniformly distrib-
uted in the search space.

As a consequence, this strategy implies that for each node in the tree, we must store
the location of the partition associated with it. However, this additional word of stor-
age is rewarded with the guarantee of a well balanced tree. The tree holds the maxi-
mum amount of data at every level, and is therefore not as deep as an unbalanced
tree of the same number of objects. As a result, fewer operations are required when
the tree is used to retrieve data. There is also slightly more set-up time since the
data within each subregion must be sorted before the partition can be inserted. How-
ever, most of the uses for the ADT outlined in the following sections are for searching
static data sets. Sorting overhead is a one-time penalty, and the gain in efficiency is
substantial.

Data Storage and Retrieval
Thus far, this discussion has focused on parti-
tioning the search space and showing the corre-
spondence between regions in the search space
and nodes in the ADT. The next step is to specify
a method for associating elements in the set of
objects, Q, with the nodes in the tree. The stor-
age rule simply insists that for a node k to con-
tain a point xk, the point must lie within the
region covered by k.

ak
i ≤ xk

i < bk
i

(1.19)

The N objects in Q are added to the tree follow-
ing the scheme outlined by eq. 1.19. Addition-
ally, each node of the tree is itself associated
with one of the objects in its region (this way, the
tree stores data in both its branches and its
leaves). Figure 1-18 shows an example of an
ADT built for data with two search keys. Each point in the data set is linked to the
tree node which is used to store it. In this figure, point A is associated with the root,
and point B is associated with A’s right child at a tree depth m = 1. Notice that the

Figure 1-18: Construction of an
ADT for a data set with 5 points
in a two dimensional hyperspace.
(following Ref.[20])

A B
C

D

E

A B
CD

A B

A

A

B
E

D

C

A

BD

C

A

B

A

x1

x2

i 1 � d, ,{ }∈∀

− 31 −

1.5 Rapid Mesh Traversal and Searching

“left” and “right” children of a node correspond to the regions which are lower and
higher (respectively) in the coordinate by which that node is partitioned. Nodes con-
tinue to be added to the tree until all the data in a subtree has been uniquely associ-
ated with a node.

With the partitions in place and the data linked to the tree’s nodes, one may now out-
line an algorithm for returning a list of objects which falls within a specified target
range. Note that this is precisely the operator which we sought at the introduction to
this section.

Denoting the target region by its minimum and maximum coordinates
we want to return the list of all objects in Q which are contained in the target region.
In this algorithm, subtrees are identified by the name of their root nodes, the left and
right children of subtree S are denoted by SL and SR, and the coordinate data for the
point stored in node S is xS.

In essence, we seek the intersection between the target region and the set
of objects Q. The result of this intersection is the set QT ≡ ∩ Q.

Several aspects of this algorithm are worth emphasizing. First, elements of Q are
only added to the return list, QT, in step R.2.1. The other steps, R.2.2 and R.2.3, are
simply recursive calls back to R.Search(S). Thus, step R.2.1 really does all the

Tmin Tmax,[]

Tmin Tmax,[]

Tmin Tmax,[]

Algorithm R: Find elements of Q which are within the target .

1. Initialize the current subtree to be the root node of the data set Q: S ← Q
Initialize the return set QT to the empty set: QT ← { }

2. Search(S): Search the subtree rooted at S:
{
2.1 If the data stored in S is contained by the target, then add S to QT:

if then QT ← {QT, S}
2.2 If the right subtree, SR, exists and overlaps the target, (by eq. 1.19) then search SR:

if ()then
search(SR)

2.3 If the left subtree, SL, exists and overlaps the target, (by eq. 1.19) then search SL:
if ()then

search(SL)

}
3. Return(QT)

Tmin Tmax,[]

Tmin
i

xS
i

Tmax
i

≤ ≤

SR 0≠() bS R,
i

Tmin
i

≥() aS R,
i

Tmax
i

≤()∧ ∧ i 1 � d, ,{ }∈()∀

SL 0≠() bS L,
i

Tmin
i

≥() aS L,
i

Tmax
i

≤()∧ ∧ i 1 � d, ,{ }∈()∀

− 32 −

1.5 Rapid Mesh Traversal and Searching

“work” to build the return list. Secondly, the algorithm uses recursion to advance to
deeper levels in the tree. Since the tree is balanced (by the partitioning strategy), one
will always traverse to the full depth of the tree. Thus, the running time will be pro-
portional to the depth of the ADT.

This observation makes it possible to estimate the complexity for the search opera-
tion. If Nmax denotes the maximum number of objects that can be stored in an ADT
of depth D, then the fact that the ADT is a binary tree implies:

(1.20)

Solving for the tree depth, D, and substituting in the current number of objects, N,
gives:

(1.21)

where the ceiling “ ” is used to indicate that non-integer results for D must be
rounded up to the next integer.

Eq.1.21 implies that traversing the entire depth of the tree takes O(log N) opera-
tions, and since the running time of Algorithm R is proportional to the time required
to traverse to the full depth, Algorithm R represents a substantial improvement over
the linear performance of an exhaustive search.

As we noted, step R.2.1 actually assembles QT, and steps R.2.2 and R.2.3 simply
setup recursive calls. When this algorithm is implemented on most compute hard-
ware, this recursion incurs substantial call stack overhead. This is especially true
since the “work” step, (R.2.1) is so short. CPU cycles dedicated to passing the argu-
ment list far outnumber those dedicated to doing useful work.

This observation suggests that it is prudent to implement a non-recursive version of
Algorithm R which keeps a stack for remembering unfollowed branches of the tree.
One such non-recursive implementation is shown in Algorithm NR.

In Algorithm NR, the monadic operators “++” and “--” are used to denote unit incre-
ments and decrements to stackSize. Note that this algorithm starts with an empty
stack and pushes unfollowed right links which overlap the target onto the stack.

Nmax 2
D

2
D 1�

� 2
0

+ + +=

2 2
D

() 1�()=

D
N 1+

2

2
log=

− 33 −

1.5 Rapid Mesh Traversal and Searching

Thus it first traverses all left links of a branch which overlap the target. When no
more left links need to be checked, it pops the top right link off the stack and follows
down the new branch in a left-links-first order.

Searching for Finite-Sized Objects
Thus far, the discussion has centered on construction of an ADT for point data in a
hyperspace defined by the coordinate ranges of the data in the search set Q. How-
ever, the real utility of the ADT is for finding intersection candidates between finite-
sized objects.

the extension of the discussion and algorithms in the preceding paragraphs to search
sets of objects begins by recognizing that for two objects to intersect in a d-dimen-
sional Euclidean space, the coordinate ranges of the objects must overlap in each of
the d dimensions[71]. The Cartesian bounding box [xmin, xmax] of a finite sized object
in d dimensions is defined as the smallest Cartesian region which can contain the
object. Figure 1-19 gives examples for planar and 3-D objects. This construction has
the same form as the “target” region in the preceding paragraphs. Bounding boxes

Algorithm NR: Find elements of Q which are within the target [Tmin, Tmax]
using a stack to avoid recursion.

1. Initialize the current subtree to be the root node of the data set Q: S ← Q

Initialize the return set QT to the empty set: QT ← { }
Set stackSize = 0

2. Search(S): Search the current subtree rooted at S:
{
2.1 If the data stored in S is contained by the target, then add S to the return set:

if then QT ← {QT, S}
2.2 If the right subtree, SR, exists and overlaps the target, push SR onto the stack:

if ()then

PUSH(SR):: stack(stackSize++)= SR
2.3 If the left subtree, SL, exists and overlaps the target, set S ← SL and go to step 2:

if ()then
S ← SL

goto 2

2.4 If the stack is not empty, pop a new right link off the stack and go to step 2:
if (stackSize ≠ 0) then

POP(S):: S = stack(stackSize);stackSize--
goto 2

}
3. The stack must be empty so return the list: Return(QT)

Tmin
i

xS
i

Tmax
i

≤ ≤

SR 0≠() bS R,
i

Tmin
i

≥() aS R,
i

Tmax
i

≤()∧ ∧ i 1 � d, ,{ }∈()∀

SL 0≠() bS L,
i

Tmin
i

≥() aS L,
i

Tmax
i

≤()∧ ∧ i 1 � d, ,{ }∈()∀

− 34 −

1.5 Rapid Mesh Traversal and Searching

may be defined for any finite geometric entity spanning any number of dimensions.
It is precisely the abstraction of an object to its bounding box which permits the ADT
to seamlessly consider heterogeneous collections of entities.

The observation that all pairs of coordinate ranges of two objects must overlap in
order for them to intersect suggests a filtering for intersection checks. Rather than
perform a detailed intersection computation of the objects in the set Q with the tar-
get region, we use the ADT only to return a list of those that can intersect. Specifi-
cally, the ADT returns a list of all objects in Q whose bounding boxes intersect that of
the target.

This structure suggests the following simple test for checking the bounding box of
the kth object against the target region:

(1.22)

With this condition formalized, the ADT algorithm then introduces a clever mapping
which reinterprets a d-dimensional bounding box as a single point in a
2d-dimensional space.

(1.23)

This mapping is applied to the bounding boxes of all the objects in the data set Q,
which yields a point set in a hyperspace with 2d dimensions. With construction of
this 2d-dimensional hyperspace complete, the search space partitioning scheme from
the preceding paragraphs is directly applicable.

The target region must also be mapped to the search space containing the point data.
However, it must be mapped to a region so that it can contain the point data (as in
the earlier example). This is accomplished by using the maximum and minimum

x1

x2

2-D Line Segment 2-D Triangle 3-D Triangle Trimmed NURB

Figure 1-19: Cartesian “bounding boxes” of several finite geometric entities in 2- and 3-D.

xmin xmin

xmin

xmin

xmaxxmax xmax

xmax

xk min,
i

Tmax
i

≤() xk max,
i

Tmin
i

≥()∧ i 1 � d, ,{ }∈()∀

xmin xmax,[]

xmin xmax,[] xmin
1

xmin
2

� xmin
d

xmax
1

xmax
2

� xmax
d

, , , , , , ,[]→

− 35 −

1.5 Rapid Mesh Traversal and Searching

coordinate limits of the entire data set Q. Using the definition of the root bounding
box [a1 b1] in eq. 1.15 yields (see also Figure 1-17):

(1.24)

With this mapping of the target region in physical space into a region in
the 2d-hyperspace of the search, the containment criterion of eq. 1.23 becomes sim-
ply:

(1.25)

Eq.1.25 is precisely the containment criterion that was used in step 2.1 of
Algorithms R and NR. However, since we are now searching for objects, rather than
points, the levels of the ADT cycle through 2d dimensions. By representing the finite-
sized, d-dimensional objects in set Q as points in 2d dimensions, the entire problem
of finding intersection candidates for a list of objects has been reduced exactly to the
problem of locating the points within a target region. Algorithms R and NR still
hold, but now the return set QT contains the list of objects whose bounding boxes
intersect that of the target. Since the objects are mapped to points in 2d dimensions,
they are infinitesimally small in the search space, and therefore cannot cross the
partitioning planes of the ADT. Thus each object may be unambiguously associated
with a specific node of the ADT. The ADT used to store a set of d-dimensional objects
is a binary tree in which each level corresponds to a partition in a 2d dimensional
hyperspace.

Performance
Table 1.2 summarizes performance of an ADT implementation by the author. In this
experiment a triangulation was constructed by computing the Delaunay triangula-
tion of a randomized point set covering the region from the origin to (1, 1) in 2
dimensions. The corresponding ADT partitioned a 4-dimensional search space
defined by the mapping in eq. 1.23. The experiment measured the look-up time for
returning the lists of triangles whose bounding boxes intersected that of a randomly
generated target region. Six triangulations were checked and the average look-up
time for 100 targets is reported. Results using the ADT are compared with those of
an exhaustive search over the triangulations in the column labeled “ratio”. Results
are normalized by the average lookup time of the ADT on the smallest triangulation.

Tmin a1
1

a1
2
� a1

d
Tmin

1
Tmin

2
� Tmin

d
, , , , , , ,[]→

Tmax Tmax
1

Tmax
2

� Tmax
d

b1
1

b1
2
� b1

d
, , , , , , ,[]→

Tmin Tmax,[]

Tmin
i

xk
i

Tmax
i

≤ ≤ i 1 � 2d, ,{ }∈∀

− 36 −

1.5 Rapid Mesh Traversal and Searching

As expected, the tree consistently outperforms the exhaustive search, even for search
sets with as few as 200 objects. With 500000 objects in the search set, the ADT was
almost 100 times faster. Scatter in this data this data is most likely a result of the
processor’s use of Level 1 and Level 2 cache. No attempt was made to optimize the
CPU’s cache use for this example. Thus while some of the smaller triangulations cer-
tainly fit entirely into L1 or L2 cache, the larger triangulations required the CPU to
fetch data off the memory chips, degrading performance slightly.

1.5.2 Painting Algorithms
A painting algorithm in computational geometry is one which traverses a graph
marking or “painting” regions of cells which have some property in common.
Figure 1-20 shows a sketch in which a set of triangles on an unstructured mesh are
cut by a closed boundary. In this illustration, we wish to classify the triangles in the
mesh as “inside” or “outside” of the boundary. This example assumes that the set of
triangles that actually intersects the body is already known from some previous com-
putation. Thus, all that remains is to efficiently classify the non-intersected triangles
that remain.

Inside/Outside determination is an application of the point-in-region problem from
computational geometry. For a body described with N geometric entities, an in/out
check using an ADT can be designed which requires O(log N) operations per test.
Therefore, with M triangles in the mesh, a naive approach to classifying the trian-
gles would have a complexity of O(M log N). We seek an algorithm which will
improve this performance to linear, or nearly linear time.

The approach begins by performing one full point-in-region query to set the status of
any one of the unclassified triangles. This triangle is the “seed” for the painting algo-

Table 1.2. Performance of ADT vs. Exhaustive search for finding intersection candidates with a
Cartesian target in a 2-D triangulation, reported times are the average of 100 look-ups.

Number of Triangles, N ADT Exhaustive Ratio

200 1 7.52 7.52

3200 2.06 16.76 8.23

11250 4.06 62.12 15.27

20000 9.53 120.53 12.65

80000 11.47 593.53 51.74

500000 37.65 3458.82 91.88

− 37 −

1.5 Rapid Mesh Traversal and Searching

 Algorithms such as this have many uses in mesh generation and computational
geometry as a whole. In addition to the in/out test illustrated here, they may also be
used for a host of other partitioning schemes on unstructured meshes. More gener-
ally, such schemes may be generically used to traverse a graph propagating informa-
tion from neighbor to neighbor along the logical links of the mesh.

The double teardrop geometry in Figure 1-21 consists of two closed surface triangu-
lations which intersect tip-to-tail. Since they intersect, and are both closed polytopes,
members of each triangulation lie within the other. If all the triangles of both bodies
are placed in a single triangle list, a painting algorithm will completely classify the
whole configuration with only four calls to the full in/out routine. Thus, the running
time of the classification operation will be which is nearly linear. The
regions painted by each seed are indicated in the small sketch accompanying the
geometry.

Algorithm P: Paint all non-intersected triangles in the triangulation, T, as
either “In” or “out”.

1. for each triangle iTri {
2. if (itri.)then go to 1. (get next triangle)
3. Set current PaintColor← Full_In_Out_check(iTri)
4. Paint(iTri):: Assigns the current PaintColor to iTri and passes this result to

unset neighbors.
{
4.a itri.status = PaintColor
4.b Loop over face neighbors of iTri

for each face neighbor iTri.tn {
if (iTri.tn.status = unknown) then Paint(iTri.tn)

}
}

5. go to 1 }. (get next triangle)

status unknown≠

O M 4 Mlog+()

Figure 1-21: Surface triangulations for two intersecting teardrop shaped bodies. The labels on
the sketch indicate regions painted by a single seed.

1
2

3
4

− 38 −

2.1 Introduction

2. Topological Primitives, Intersection and Geometric
Degeneracy

2.1 Introduction
This section focuses on the process of extracting the wetted surface of a configuration
described by an arbitrary number of overlapping components. With this nominal
goal in sight, the process of extracting this surface brings up many topics which are
important not only to Cartesian mesh algorithms, but to both mesh generation as a
whole and various aspects of computational geometry. The algorithms developed
have general application to geometric problems. The final product of this section is a
robust method for tessellating the exposed surface of a group of objects, and this
algorithm has many applications not only in other disciplines of CFD, but in a vari-
ety of other fields within the computational sciences. The intersection problem intro-
duces the fundamental topics of topological primitives, and geometric degeneracy,
which is approached through the use of exact arithmetic and tie-breaking algo-
rithms.

2.1.1 Motivation
A variety of successful Cartesian mesh schemes operate successfully without ever
actually extracting the wetted surface of a configuration. The approaches of Mel-
ton[56] and Charlton[25], for example, retain internal portions of the geometry
throughout the mesh generation and flow solution process. Such methods have pro-
duced several noteworthy results for a variety of complex configurations[58,57,3,25].

Still, removal of internal geometry offers several advantages worth considering. The
foremost among these is that it greatly simplifies the mesh generation procedure by
removing the ambiguities introduced by the possibility of having internal geometry.
The sketch in Figure 2-1 gives an indication of some of the more obvious complica-
tions resulting from internal geometry.

− 39 −

2.1 Introduction

When internal geometry is present (as shown in the left of the sketch), body-cut Car-
tesian mesh cells may intersect a component boundary but be entirely encased
within another component. Cell e in Figure 2-1 shows an example of such a cell. This
cell must be tested for containment by C1 before it can be rejected from the mesh. A
second complication is that cells which do cut the outer surface, like d, may also
intersect geometry which is completely contained. In this latter case, the boolean
polygon subtraction correctly computes the exposed region of d,
but such operations can be computationally intensive. Finally, external cells, like c,
may cut the geometry at the intersections between components. Since portions of the
boundary of both components which c intersects make up the wetted surface of the
configuration, it must be linked to surface fragments on each of its components. In
addition, correctly computing cell c’s exposed region again requires a polygon sub-
traction similar to that for d.

Obviously, all of these cases can be considered when constructing the mesh generator
without major effort, the more serious complication is less obvious. Since the strat-
egy has allowed cells to intersect completely contained geometry, all intersected cells
must be tested for this. Put another way, all intersections (internal or external) must
be classified. Section 1.5.2 discussed the fact that point-in-polygon testing was at
best an O(log N) operation. Thus by admitting internal geometry into the mesh gen-
erator, one has inherited an O(log N) test for every cut cell in the domain. When con-
sidering complex configurations, this is a potentially expensive proposition. If a
configuration is described by O(106) triangles, and the mesh has O(107) cells, then
around 106 of these would intersect the body. Since the mesh generation time can be
linear in the number of cells, repeated classification of cut cells may swamp the pro-
cedure. In fact, a breakdown of the mesh generation time for various configurations
performed by Refs. [56] and [3] have indicated that up to 60% of the processor time

d d C1 C2∪()–=

External

Internal

a

b

d

c

a

b

All cut- cells

c

Figure 2-1: Component-based Cartesian mesh generation, with and without removal of internal
geometry.

e

d

C1
C1

C2 C2

are external

− 40 −

2.1 Introduction

was dedicated to resolving this issue. Communications with the authors of Ref.[25]
have further substantiated these results.

While several strategies exist to reduce the time for intersection classification, a very
attractive proposal is to avoid it completely. In the sketch at the right of Figure 2-1,
the components have been intersected prior to mesh generation. Since no geometry
exists within the wetted surface, any intersection with a Cartesian cell is, by design,
exposed to the flow.

The Cartesian mesh generation strategies adopted by References [47] and [89] oper-
ate assuming that the geometry is described by either a single component or a collec-
tion of non-intersecting components. These methods use CAD packages to perform
component intersection and extraction of the wetted surface. By intersecting the
components as an integral part of mesh generation, we attempt to combine the flexi-
bility and automation of a component-based approach, with the simplification of not
having internal geometry.

Since the intersection is computed in the mesh generation phase, the complete geom-
etry of all the components is available for later use. Thus the approach easily lends
itself to automation and macroscopic control for parametric studies which move com-
ponents or modify component geometry.

The component intersection algorithm developed here may be viewed as a general
surface modeling technique. As such, it has many applications outside of Cartesian
mesh schemes. The possibility of regridding the wetted surface as described by Löh-
ner[54], makes it a useful tool for unstructured mesh generation. In addition, the
automated block-structured (overset) method of Chan and Meakin[24] makes such an
algorithm similarly useful for structured mesh applications.

Beyond CFD, the algorithm has application in many of the computational sciences.
In computer science, ray tracing and solid modeling routines operate substantially
faster if internal geometry is removed. In the field of nanotechnology, for example,
microdevices are simulated by combining molecular models. Removal of the internal
geometry substantially simplifies the descriptions of such structures and devices.

2.1.2 Important Topics
The design and construction of a geometric algorithm for intersecting components
and extracting the wetted surface brings up many important topics in computational

− 41 −

2.1 Introduction

geometry. Using this algorithm as a goal, this section introduces some of these topics
and discusses the underlying problems and current research in these aspects of com-
putational geometry. Since these topics are general, they arise in unstructured and
structured mesh generation and surface modeling.

Topological Primitives: The specific tasks involved in assembling the complete inter-
section algorithm will be implemented through a set of predicates constructed
through the use of topological primitives. A topological primitive is an operation
which classifies a given input set into one of a constant set of possible outputs. A
binary topological primitive has two possible outputs (e.g. true, false), while a ternary
topological primitive has three. Such predicates can only classify existing data, they
cannot construct new data. For example, they cannot provide the point of intersec-
tion between two line segments. They can only reveal if the two line segments do
indeed intersect. In this way they provide information about the topology of their
inputs. They may be used to establish a connectivity, trigger subsequent action, or
describe a logical structure. We will discuss predicates for triangle-triangle and tri-
angle-cube intersection, Delaunay triangulation, and point-in-polygon determina-
tion.

Geometric Degeneracy: When two objects are in general (or simple) position, they do
not share common vertices, a common plane, or have improperly intersecting edges.
Geometry is said to be in special position when some sort of degeneracy exists. Two
line segments may share a common end point, or may improperly intersect where
the endpoint of one lies exactly on the other segment. If more than two points are
colinear, or more than three are coplanar or cocircular, the data is degenerate. Arbi-
trarily positioned data indicates that some objects in a set may be in special position.
Although rare in nature, degenerate data is common (often by design) in analytic

x0

x1

Figure 2-2: Some examples of geometric degeneracy in two and three dimensions.

x0

x2
x1

Improper intersection (2-D) Colinearity Coplanar (3-D) Improper Intersection (3-D)

− 42 −

2.2 Component Intersection

geometry, and in the machine generated data output by CAD systems. Figure 2-2
illustrates a few common geometric degeneracies in two and three dimensions. The
discussion will present an algorithmic approach for handling degenerate geometry,
which fully avoids both tolerancing and handling of special cases.

Exact Arithmetic: Machine round-off error poses a formidable challenge to many
geometric algorithms. Often geometric predicates are decided based on the sign of a
result. While sign evaluation is exact for real numbers, the finite length, floating-
point numbers used by compute hardware are not the set of reals. As a result, many
topological primitives may find themselves trying to distinguish between numbers
like and exact zero. The algorithm must know if the result is round-off error, or
significant. Common approaches to exact arithmetic are through the use of integer
arithmetic[11,48] or via arbitrary precision floating point implementations[8,72,81].

2.2 Component Intersection
The problem of intersecting the various components of a given configuration and
extracting the wetted surface may be viewed as a series of smaller. Although concep-
tually straightforward, efficient implementation of such an intersection algorithm is
delicate. Each component is assumed to be described by its own surface triangula-
tion. This is not a major restriction, since surface triangulations for individual com-
ponents are generally easy to generate. The algorithm ultimately requires
intersecting a number of non-convex polyhedra with arbitrary genus (an arbitrary
number of “donut holes”). This generality makes convex polyhedra intersection algo-
rithms inappropriate. Each intersected triangle must be broken up into smaller
ones, which is a problem in constrained triangulation. Finally, the efficient deletion
of the interior triangles requires inside/outside determination and neighbor paint-
ing.

2.2.1 Spatial Searches
Before beginning the actual intersection, we first construct an ADT as in section
1.5.1 and insert the triangles of all components into the tree. This provides a struc-
ture for returning the list of intersection candidates for any target triangle in
O(log N) time.

As discussed earlier, the ADT is a hyperspace search technique which converts the
problem of searching for finite sized objects in d dimensions to the simpler one of
partitioning a space with 2d dimensions. Since searches are not conducted in physi-

10 17–

− 43 −

2.2 Component Intersection

cal space, however, objects which are physically close together are not necessarily
close in the search space. This fact can degrade the tree’s performance[77]. In an
effort to improve lookup times, we therefore first apply a component bounding box
filter on the triangles before inserting them into the tree.

Constructing this filter is a simple matter of checking all the triangles in the domain
against the bounding boxes of the components. Since they cannot possibly partici-
pate in an intersection, triangles which are not contained by the bounding box of a
component other than their own are not inserted into the tree.

The filtering process has two beneficial effects. First it reduces the tree size (depth)
since fewer triangles are inserted. Thus subsequent look-ups will traverse a smaller
tree. Obviously, this is a case dependent savings, but filtering typically removes from
25 to 75% of the triangles in a configuration from the ADT. Thus we create substan-
tially smaller trees, which require less memory and are quicker to traverse.

The second advantage of the bounding box filter is that it increases the probability of
encountering an intersection candidate in the tree. In other words, it improves the
“hit rate” of the tree. The filter selectively removed only those triangles which could
not possibly be involved in an intersection. Therefore, the tree is not crowded by
irrelevant geometry.

2.2.2 Intersection of Generally Positioned Triangles in R3

With the task of intersecting a particular trian-
gle reduced to an intersection test between that
triangle and those on the list of candidates pro-
vided by the ADT, the intersection problem is
recast as a series of triangle-triangle intersec-
tion computations. Figure 2-3 shows a view of
two intersecting triangles as a model for discus-
sion. Each intersecting triangle-triangle pair
contributes one segment to the final polyhedron
that comprises the wetted surface of the config-
uration. At this point, it is sufficient to assume
that the geometry is in general position. Thus, the intersections are always assumed
to be non-degenerate. Triangles may not share vertices, and edges of triangle-trian-

Figure 2-3: An intersecting pair of
generally positioned triangles in
three dimensions.

a

b

c

1

2

0

intersection
segment

− 44 −

2.2 Component Intersection

gle pairs do not intersect exactly. All intersections are proper. This restriction will be
lifted in later sections with the introduction of an automatic tie-breaking algorithm.

Several approaches exist to compute such an intersection. Perhaps the most obvious,
and certainly the most popular, is a simple slope-pierce test from analytic geometry.
We can examine this approach using the sketch in Figure 2-4 which checks for the
intersection of edge ab through triangle ∆0,1,2 from the previous figure. The slope-
pierce test proceeds by first constructing p, the intersection of ab with the plane of
∆0,1,2. We then check to insure that p is between a and b () and finally if p is
between a and b then it is checked for containment within ∆0,1,2 by verifying that the
following vector cross-products all have the same sign.

(2.1)

In analytic geometry, this test provides a reliable
intersection check, and actually constructs the
location of point p, (p0, p1 ,p2) in the process.
Computationally, however, the difficulties begin
immediately. If one begins by expressing the line
through (a0, a1, a2) and (b0, b1, b2) in standard
form there is an obvious problem when this line
is vertical (no-slope). Thus, vertical test edges
already present a “special case”. While this diffi-
culty can be circumvented through the use of a
parametric representation of the line, a more
fundamental and subtle difficulty still exists.

The computed intersection point, p, is a constructed entity. Operations which result
in such new geometry may be referred to generically as “constructors”, and the geom-
etry produced by constructors is necessarily known to different precision than the
“given” data. While given data may be considered exact, constructed data has
incurred round-off error during the construction process. Worse, since any slope-
pierce test requires floating-point division, one has essentially lost control over the
accuracy to which p is known. Consider IEEE 754 compliant, 32-bit hardware, single
and double precision on these architectures uses 23 and 52 bits (respectively) to rep-
resent the fractional part of the normalized and rounded mantissa. Just as
results in a value not exactly expressible with a fixed number of base 10 digits, many
real numbers cannot be exactly represented exactly in 23 or 52 bits. The division

a p b« «

02 p2× 10 p0× 21 p1×

a

b

1

2

0

p

x0

x2

x1

Figure 2-4: Sketch for a slope-
pierce test of edge ab against
triangle ∆0,1,2.

10 3÷

− 45 −

2.2 Component Intersection

operation needed for computing p may result in a loss of precision. Since its position
cannot be trusted, if p falls near the edges or the vertices of the triangle, it would be
indistinguishable from a point outside the triangle, and the implementation will fail.

A more fundamental observation about the slope-pierce test is to notice that it
requires intermediate steps which generate new geometry, and this is not our goal.
We wish to know if ab intersects ∆0,1,2. This is a question of topology, not of geometry.

A particularly attractive technique for determining if the segment intersects the tri-
angle comes in the form of a Boolean test. This predicate can be performed robustly
and quickly using only multiplication and addition. It therefore avoids the inaccu-
racy and robustness pitfalls associated with division of fixed width floating point
numbers. It is useful to present a rather comprehensive treatment of this intersec-
tion primitive because subsequent sections on robustness will return to these rela-
tions.

For two triangles to properly intersect in three dimensional space, the following con-
ditions must exist:

1. Two edges of one triangle must cross the plane of the other.
2. If condition (1) exists, there must be a total of two edges (of the six available)

which intersect within the boundaries of the triangles.

A series of Boolean primitives may be constructed for these checks which have the
attractive property that they permit one to establish the existence and connectivity
of the segments without relying on the problematic computation of the pierce loca-
tions. If the locations of these points is needed at a later time, they may then be rele-
gated to post-processing where they may be grouped together and, since the
connectivity is already established, floating-point errors will not have fatal conse-
quences.

The Boolean primitive for the 3-D intersection of an edge and a triangle uses the con-
cept of the signed volume of a tetrahedron in 3-D. This signed volume is based on the
well established relationship for the computation of the volume of a simplex, T, in d
dimensions in determinate form (see for ex. [64]). The signed volume V(T) of the sim-
plex T with vertices in d dimensions is:v0 v1 v2 � vd, , , ,()

− 46 −

2.2 Component Intersection

(2.2)

where denotes the jth coordinate of the kth vertex for and
. In three dimensions, eq. 2.2 gives six times the signed volume

of the tetrahedron Ta,b,c,d.

(2.3)

This volume serves as the fundamental building block of the geometry routines. It is
positive if the triangle ∆a,b,c forms a counterclockwise circuit when viewed from an
observation point located on the side of the plane defined by ∆a,b,c which is opposite
from d. Positive and negative volumes define the two states of the Boolean test while
zero indicates that the four vertices are exactly coplanar. If the vertices are indeed
coplanar, then the situation constitutes a “tie” which will be resolved with a general
tie-breaking algorithm presented shortly (see §2.4). Of course, under the present
assumption of generally positioned data, a tie can never occur. In applying this logi-
cal test to edge ab and triangle ∆0,1,2 in Figure 2-3, ab crosses the plane if and only if
(iff) the signed volumes T0,1,2,a and T0,1,2,b have opposite signs. Figure 2-5 presents a
graphical look at the application of this test.

d!V T v0v1v2�v
d

 det

v00
v01

� v0d 1–
1

� � � � �

vd0
vd1

� vdd 1–
1

=

vkj
k 0 1 2 � d, , , ,{ }∈

j 0 1 2 � d 1–, , , ,{ }∈

6V Ta b c d, , ,() det

a0 a1 a2 1

b0 b1 b2 1

c0 c1 c2 1

d0 d1 d2 1

det

a0 d–
0

a1 d–
1

a2 d–
2

b0 d–
0

b1 d–
1

b2 d–
2

c0 d–
0

c1 d–
1

c2 d–
2

= =

V T 0 1 2 b, , ,() 0>

Figure 2-5: Boolean test to check if edge ab crosses the plane defined by triangle ∆0,1,2 through
computation of signed volumes of two tetrahedra.

b

0

2

1

p

a

b

0

2

1

a

b

0

2

1
a

V T 0 1 2 a, , ,() 0<

− 47 −

2.2 Component Intersection

With a and b established on opposite sides of the plane, all that remains is to deter-
mine if ab pierces within the boundary of the triangle. This is the case only if the
three tetrahedra formed by connecting the end points of ab with the endpoints of the
three edges of the triangle ∆0,1,2 all have the same sign, that is if:

(2.4)

is true. Figure 2-6 illustrates this test for the case where the three volumes are all
positive.

Each triangle-triangle pair which intersects produces one line segment resulting
from the intersection. It is the predicates in eqs.2.2 and 2.4 which determine the
existence of all the segments resulting from intersections between triangle-triangle
pairs. Within each intersected triangle, these segments may be connected to a linked
list of all such segments that exist on that triangle. Thus the topology and connectiv-
ity of the segments within each triangle is known using only combinatorial opera-
tions. All that remains is to actually compute the locations of the pierce-points.

2.2.3 Construction of the Pierce Point Between an Edge and a Triangle

The slope-pierce test was rejected for determining if an edge intersected a triangle.
The existence of a pierce-point between an edge and a triangle is a question of topol-
ogy, making it appropriate to use a topological primitive to answer the question of

V T a 1 2 b, , ,() 0< V T a 0 1 b, , ,() 0< V T a 2 0 b, , ,() 0<∧ ∧

or

V T a 1 2 b, , ,() 0> V Ta 0 1 b, , ,() 0> V T a 2 0 b, , ,() 0>∧ ∧

Figure 2-6: Boolean test for pierce of a line segment ab within the boundary of a ∆0,1,2.

a

b

0

2

1

p

a

b

0

2

1

p

Ta,1,2,b Ta,0,1,b Ta,2,0,bb

0

2

1

p

a

− 48 −

2.2 Component Intersection

existence. With the existence of the pierce-points established, and the connectivity
associated with them already in hand, we may now design a constructor to generate
the actual geometry of this pierce point.

Section 2.2.2 briefly noted that the direct use of slopes for constructing this location
resulted in special cases when the edge has “no-slope”. The denominator of the equa-
tion of the line (in standard form) becomes zero and requires special treatment. A
better alternative comes from expressing the line and the triangle with parametric
representations.

Let , , , and as indicated in Figure 2-7. The
parametric representation of the plane of ∆abc is , while the line,
led passing through points d and e is . The line and plane intersect
when the values of the running variables r,s,t make . Setting these two
sets of parametric equations equal to each other constitutes a system of three equa-
tions in three unknowns.

(2.5)

Solving for s, r, and t yields:

(2.6)

a

b

c r

t

s

A

B

C

Pabc

Figure 2-7: Parametric representation of a line defined by its endpoints and a plane defined by
the three vertices of a triangle in 3-D.

d

e

led

D

A b a–= B c b–= C a c–= D e d–=

P r t,() c rC tB–+=

l s() d sD+=

P r t,() l s()=

c rC tB–+ d sD+=

s c0 d0–() a2 c–
2

() c1 b1–() a1 c–
1

() c2 b2–()–[]

=

c1 d1–() a2 c–
2

() c0 b0–() a0 c–
0

() c2 b2–()–[]–

c2 d2–() a1 c–
1

() c0 b0–() a0 c–
0

() c1 b1–()–[]+

 1
Γ

− 49 −

2.2 Component Intersection

and

(2.7)

where the denominator Γ is:

(2.8)

Of course, it is possible that the denominator, Γ, may be zero in these equations.
However, this occurs only when the line led is parallel to the plane of the triangle.
Since we only compute the pierce-points for segments that are already known to
properly intersect the triangles, this case cannot arise. The topological checks have
already eliminated it.

As a final comment, note that the parameterization for led in eq. 2.5 is such that
returns a point on the segment ed for . Similar bounds apply for r and t.
Thus we can check the consistency of the geometry constructed by eqs. 2.6-2.8.

2.2.4 Retriangulation of Intersected Triangles
The final result of the intersection step is a list of segments linked to each inter-
sected triangle, and the locations of the pierce-points for the edges which intersect
other triangles in the configuration. The complete list of all the segments attached to
all the intersected triangles constitutes the geometric intersection of the polyhedra
describing the components within the geometry. Figure 2-8 contains an example
showing what has been constructed thus far. On the left, the figure shows a model

r e0 d0–() c2 b–
2

() c1 d1–() c1 b–
1

() c2 d2–()–[]

=

e1 d1–() c2 b–
2

() c0 d0–() c0 b–
0

() c2 d2–()–[]–

e2 d2–() c1 b–
1

() c0 d0–() c0 b–
0

() c1 d1–()–[]+

 1
Γ

t e0 d0–() a2 c–
2

() c1 d1–() a1 c–
1

() c2 d2–()–[]

=

e1 d1–() a2 c–
2

() c1 d1–() a0 c–
0

() c2 d2–()–[]–

e2 d2–() a1 c–
1

() c0 d0–() a0 c–
0

() c1 d1–()–[]+

1
Γ

Γ e0 d0–() a2 c–
2

() c1 b1–() a1 c–
1

() c2 b2–()–[]

=

e1 d1–() a2 c–
2

() c0 b–
0

() a0 c–
0

() c2 b–
2

()–[]–

e2 d2–() a1 c–
1

() c0 d0–() a0 c–
0

() c1 b1–()–[]+

l s()

s 0 1,[]∈

− 50 −

2.2 Component Intersection

configuration with two intersecting cubes. On the right, the cubes are shown in wire-
frame with the segments that make up the intersections highlighted.

Figure 2-9 examines the situation on any one of the intersected triangles. The figure
shows a model of a generic intersected triangle linked to 3 segments. The segments
divide the intersected triangle into polygonal regions which are either completely
inside or outside of the body. In order to remove the portions of these triangles which
are inside, we triangulate these polygonal regions within each intersected triangle
and then reject the triangles which lie completely inside the body.

In the sketch, the segments resulting from the intersection calculation are high-
lighted. These segments serve as the constraints in the triangulation which decom-
poses the large triangle ∆abc. Since the segments may cut the triangle arbitrarily, a
pre-disposition exists for creating triangles with arbitrarily small angles. In an effort
to keep the triangulations as well behaved as possible, we employ a two dimensional
Delaunay triangulation algorithm within each original intersected triangle. Using

Figure 2-8: Left: Example configuration of two intersecting cubes. Right: wireframe showing
intersection with segments linked to triangles.

a

b

c

1 2

3

4

Figure 2-9: Decomposition of intersected triangle using a constrained Delaunay
triangulation algorithm (constraining segments shown as heavy solid lines).

− 51 −

2.2 Component Intersection

the Delaunay triangulation not only guarantees that the triangulation will exist, but
it also maximizes the minimum angle in the triangulation. Using the intersection
segments as constraints, the algorithm runs within each intersected triangle produc-
ing new triangles which may be uniquely characterized as either completely inside
or outside.

Voronoi Diagrams
Before turning directly to the Delaunay triangulation, it is useful to first examine
the Voronoi diagram of a set of sites in a plane. The Voronoi diagram is an extremely
important structure in computational geometry, in fact it has been called “a geomet-
ric structure second in importance only to the convex hull”[64]. Voronoi diagrams
have been encountered in a variety of disciplines and have been applied to problems
ranging from the geometry of soap bubbles and crystal growth patterns to the loca-
tions of fire towers[78]. The Voronoi diagram is also known as the Dirichlet tessella-
tion since it was first discussed by Dirichlet in 1850. A history of the subject is
presented in reference [7].

For a collection of sites in the plane , the Voronoi diagram V (P) of
the set is the planar straight-line graph constructed by drawing the line segments
which separate the plane into regions that are closer to any particular member of P
than to any other site in the set. Figure 2-10 shows an example for a set with 35
sites. Each of the regions surrounding the sites identifies locations in the plane
which are closer to that site than to any other site in the set. The analogy of soap
bubbles is clear, if the nucleation sites for the bubbles are those in P, and the bubbles

Figure 2-10: Voronoi diagram V (P) of a set {P} with 35 sites

Sites in {P}

“vertex” of
Voronoi

P P1 P2 � Pn, , ,{ }=

− 52 −

2.2 Component Intersection

are inflated at a constant rate, V (P) is a graph of the resulting structure when the
bubbles can inflate no more.

Some properties associated with the Voronoi diagram include:1

1. The Voronoi region associated with any site, V (Pi) is convex.
2. V (Pi) is unbounded iff Pi is on the convex hull of the set of sites, P.
3. The “vertex” of a Voronoi diagram is the point at which 3 or more Dirichlet

Regions meet (see Figure 2-10). If v is the vertex at the junction between V (P1),
V (P2) and V (P3), then v is the center of the circle C(v) which passes through P1,
P2, and P3.

4. C(v) is the circumcircle for the Delaunay triangle corresponding to v.
5. The interior of C(v) is site free.
6. If Pj is the nearest neighbor to Pi then is an edge of the Delaunay triangulation of

P.
7. If a circle exists through Pi and Pj, which contains no sites then is an edge of the

Delaunay triangulation of P.
8. V (Pi) is unique.

The duality of the Voronoi diagram and Delaunay triangulation implies that many of
these properties correspond to properties of the Delaunay triangulation as we will
see below.

Delaunay Triangulations
The Delaunay triangulation D(P) of the set of sites, P, is the straight-line mesh dual
of the Voronoi diagram V (P), provided that no four sites are cocircular. Figure 2-11
shows the Delaunay triangulation for the sites used to demonstrate the Voronoi dia-
gram (Figure 2-10). Delaunay showed that this dual will always be a triangulation
as long as no four sites in P are cocircular[33]. There is a one-to-one correspondence

1. Following from reference [64] and others.

PiPj

PiPj

Figure 2-11: Delaunay triangulation of a set of 35 sites (see
Voronoi diagram in Figure 2-10

− 53 −

2.2 Component Intersection

between edges in the Delaunay triangulation and edges in the Voronoi. Examination
of the examples in Figures 2-10 and 2-11 reveals that this correspondence does not
necessarily mean that the dual segment in D(P) actually crosses its corresponding
edge in V (P).

Some properties of Delaunay triangulation include:1

1. D(P) is the straight-line dual of V (P).
2. Each triangle in D(P) corresponds to a vertex in V (P).
3. Each edge in D(P) corresponds to an edge in V (P).
4. Each node in D(P) corresponds to a region in V (P).
5. The boundary of D(P) is the convex hull of the sites. (cf. Voronoi prop. 2.)
6. The circumcircle for a triangle in D(P) is centered at Voronoi vertex v, at

the junction between V (P1), V (P2) and V (P3). (cf. Voronoi props. 3-4)
7. The circumcircle for a triangle in D(P) contains no other site in P. (cf.

Voronoi prop. 5.)
8. There exists an edge-circle which passes through the two sites of every edge in

D(P) which is site free. (cf. Voronoi prop. 7.)
9. The Delaunay triangulation maximizes the minimum angle of the triangula-

tion of P.
10. D(P) is unique and always exists.

Properties 9 and 10 make the Delaunay triangulation a particularly attractive
method for retriangulating the intersected triangles like that shown in Figure 2-9.
Since the components will intersect arbitrarily, these triangles may be very compli-
cated, and “glancing” intersections introduce the likelihood of having triangles with
very small angles. Property 9 implies that we will maximize (as much as possible)
the small angles within the final triangulation. Property 10 guarantees that the
approach can never fail.

Delaunay Triangulation by Successive Point Insertion
A variety of approaches exist to construct the Delaunay triangulation of a point set
(see surveys in Refs.[9] and [55]). However, since each triangulation to be con-
structed starts with the three vertices of the original intersected triangle (vertices
a,b,c in Fig. 2-9), the incremental algorithm of Green and Sibson[44] is particularly
appealing. Starting with the three vertices defining the original triangle, the pierce-
points associated with the segments are successively inserted into the evolving tri-
angulation. After all the pierce-points are inserted, the constraints are enforced.

1. This is a partial list, see references [71], [55], and [9] for more.

∆P1 P2 P3, ,

∆P1 P2 P3, ,

− 54 −

2.2 Component Intersection

The Green and Sibson algorithm is incre-
mental, because it adds the sites one at a
time, while recovering a Delaunay triangu-
lation after each site insertion. The algo-
rithm makes extensive use of “edge
swapping” as shown in Figure 2-12. After
identifying an edge to be swapped, (edge bc
in Fig.2-12), one identifies the quadrilateral

formed by the two triangles that share the edge. Swap(a,b,c,d) then reconfigures this
quadrilateral by exchanging the diagonal. The operation is completely local to the
quadrilateral, and thus has no effect on triangles in the rest of the mesh.

Figure 2-13 provides an overview of the Green and
Sibson incremental triangulation algorithm[44].
The method begins with a pre-existing Delaunay
triangulation. In the present case, this is simply
the intersected triangle which is to be retriangu-
lated. In general, one begins by creating a triangle
which encases all the sites in the set P.

Step 1. Insert the next site, p, into the triangula-
tion, and locate the triangle ∆a,b,c which contains
this site. Under the assumption of general posi-
tion, this site can never fall directly on an edge in
the mesh, there must be a triangle which contains
it.

Step 2. Connect the new site with vertices of the
triangle which contains it by adding the three
edges pa, pb, and pc. These new edges are all inci-
dent upon p, and since the original triangulation
was Delaunay, p must be a nearest neighbor of a,
b, and c. Thus, the three new edges are automati-
cally Delaunay. The original edges of the triangle,
however, are not. Therefore, the original edges ac,
ba, and cb now become “suspect” edges.

Figure 2-12: Demonstration of the
Swap(a,b,c,d) operation which exchanges
the diagonal of the quadrilateral
(cb→ad)

a

b

c

d
a

b

d

c

Swap(a,b,c,d)

a b

c

p

a b

c

p

a b

c

p

d

p

d

a b

New Suspect edges

 Suspect edges

step 1.

step 2.

step 3.

step 4.

Figure 2-13: Illustration of
Green and Sibson Delaunay
triangulation algorithm.

− 55 −

2.2 Component Intersection

Step 3. Apply the incircle predicate to the suspect edges. The incircle predicate is
based on the circumcircle property (prop. 7, page 53) which states that the circle
through the three vertices of a triangle in a Delaunay triangulation contains no
other sites. The predicate is applied to each of the suspect edges. Each suspect edge
constructs the quadrilateral formed by its two neighboring triangles. It then con-
structs a circle through the new site, p, and tests the fourth point of the quadrilateral
for containment. If the test point falls within the circle, the diagonal of the quad is
swapped (see Fig.2-12). Figure 2-14 shows an example in which the test point (z)
fails, resulting in a swap.

Step 4. Swap and propagate. In Figure 2-13, the original suspect edges are ac, ba,
and cb. Of these, only ab needs to be swapped. When an edge is swapped, new sus-
pect edges are identified on the boundary of the quadrilateral. Of these, only those
not incident upon point p require testing, since we already know from step 2 that
edges incident upon p are Delaunay. Thus the incircle test gets propagated forward
through the mesh. In Figure 2-13, the new suspect edges are ad, and db, and the
small arrows indicate the direction of propagation. In the demonstration of the incir-
cle predicate shown in Figure 2-14, forward propagation dictates that edges qz and
zr become the new suspects. Each new suspect edges recursively calls the incircle
predicate, swapping edges if necessary. The edge swapping continues until all sus-
pect edges result in no new swaps. When the edge swapping terminates, the new
mesh is Delaunay, and the algorithm returns to Step 1 to insert the next site. The
process repeats until all sites in the set {P} are inserted.

Running time for the Green and Sibson algorithm is strongly dependent upon the
method used to locate the triangle which contains a new site, and the order in which
the sites are added. For N sites, each proximity query in step 1 may be conducted in

p

q

r
z

Figure 2-14: Incircle testing of point z for containment within the circumcircle of (p,q,r).
Since z is contained, the diagonal of the quadrilateral pqzr is swapped (qr→pz).

q

r

z

p

New Suspect Edges

If (InCircle(p,q,r,z)) then Swap(p,q,r,z)

− 56 −

2.2 Component Intersection

O(log N) time if one pre-sorts the sites, or using a random site choice com-
bined with a stencil-walk[60]. If sites are inserted in an order which minimizes swap-
ping, then the algorithm has a best case complexity of O(N log N). The upper
complexity bound assumes that a particularly poor site insertion strategy may pro-
duce O(N2) swapping operations after each site is inserted. Inserting sites in a ran-
dom order has a high probability of avoiding the pathological quadratic upper
bound[46,9].

Constrained Delaunay Triangulation
At this juncture, the intersected triangles have been decomposed into smaller trian-
gles, using the pierce-points as sites in the Delaunay algorithm. What remains is to
insure that the segments resulting from the intersection of each triangle-triangle
pair are edges in the triangulation. The segments need to be constraints of the trian-
gulation on each intersected (original) triangle (as shown in Figure 2-9, page 50).

A constrained Delaunay triangulation is one which contains a set of prescribed edges
such that the circumcircle of each triangle contains no other vertex of the mesh
which is visible to it[27,82]. Two vertices are visible two each other if a straight line
joining them does not intersect a constraint.

Each constraining segment is first checked to see if it is already in the set of edges of
the triangle. If it is not, then the edges it crosses are recursively swapped until the
edge becomes an edge in the triangulation. Figure 2-15 shows a demonstration of
this process. Initially (a) all the segments joining a and b are already edges in the tri-
angulation. However, constraining edge ed is not. In (b), the edges that ed intersects

O N1 2Ú()

a

b

c

d
a

b

c

d
e e

(a) (b) (c)

Figure 2-15: Enforcement of constraining segments through edge deletion and
retriangulation.

− 57 −

2.2 Component Intersection

are removed and ed is inserted. The vacant polygons on either side of ed are then
retriangulated in accordance with the incircle test (see [55,27,82] for further detail).

After enforcement of the constraints, each intersected triangle has been decomposed
into small triangles which lie entirely inside or outside of the wetted surface of the
triangulation. Figure 2-16 presents a view of the situation in 3-D, using the “two
cubes” configuration from Figure 2-8 (page 50). The figure shows that after the inter-
section, no triangle is properly intersected by any other.

2.2.5 The Incircle Predicate
The incircle predicate is the cornerstone of the Delaunay algorithm in §2.2.4.
Figure 2-14 on page 55 presented this predicate graphically. Now we wish to formal-
ize the construction of this test, using the topological primitives designed for the
intersection computation. Relating the incircle test to the signed volume calculation
of eq. 2.3 starts by recognizing that if one projects the 2-D coordinates (x,y) of each
point in the incircle test onto a unit paraboloid z = x2 + y2 with the mapping:

, where , , and (2.9)

faces (shaded)

Retriangulation of intersected

(wireframe)

Original Polytopes

Figure 2-16: Decomposition of intersected triangles into triangles which
lie completely inside or outside the configuration.

kx ky,() k′x k′y k′z, ,()→ k′x kx= k′y ky= k′z kx
2 ky

2+=

− 58 −

2.2 Component Intersection

Using this mapping, the four points of the quadrilateral in the 2-D incircle predicate
project to form a tetrahedron in 3-D. Therefore, the incircle predicate may be viewed
precisely as an evaluation of the volume of a tetrahedron in the mapped coordi-
nates1. As a result, InCircle(p,q,r,z) becomes precisely an evaluation of V(Tp´q´r´z´)
using eq. 2.3. When V(Tp´q´r´z´) > 0, then z lies within the circle defined by p, q,and r
and edge qr must be swapped to pz for the triangulation to be Delaunay (see
Figure 2-14 on page 55). This mapping properly casts the incircle predicate as a topo-
logical primitive which is desirable for the same reasons discussed in §2.2.2 concern-
ing the intersection of triangles.

Figure 2-17 shows an example of the retriangulation procedure applied within a sin-
gle large fuselage triangle that has been intersected by a wing leading edge. Since
the wing leading edge has much higher resolution requirements, its triangulation is
substantially more refined. In all, 52 segments from the wing leading edge constrain
the triangulation. This example is interesting because it demonstrates the need for
robustness within the intersection and retriangulation algorithms. The length scales
created by the intersection differ in magnitude by approximately 29 (see footnote2).
Component data is considered “exact” in single precision, and the intersection points

1. When the mapping in eq. 2.9 is applied to set {P} → {P´}, D (P) maps to the lower convex hull of {P´}. See [64]
or [50] for details.

2. It is useful to think in base 2 here, because it reveals that the first 9 bits of the numbers are identical (assum-
ing the exponent on all the data is the same - as it will be if the geometry is not too near the origin). In double
precision on a 32-bit machine, this implies that 41 bits are still left to uniquely characterize the geometry -
the intersections can get substantially “worse” before one runs out of resolution.

(b)

(a)

(c) (d)

Figure 2-17: Retriangulation within a large fuselage triangle pierced by a wing leading
edge component with significantly higher resolution. The 52 segments describing the
intersection of the leading edge constrain the triangulation.

− 59 −

2.2 Component Intersection

are computed from eqs.2.6-2.8 using double precision. This example involved no tie-
breaking. However, the succession of embedded enlargements in Figure 2-17 empha-
sizes the degree of irregularity possible in the resulting triangulations, and it under-
scores the demand for a robust implementation of the fundamental geometry
routines.

Figure 2-18 presents a 3-D example with four intersecting teardrop shaped bodies.
The constrained Delaunay triangulation algorithm ran within all in the intersected
triangles, retriangulating, and constraining each triangulation with the segments
from the intersection. In the figure, the constrained Delaunay triangulations are
shown with heavy lines, and the arbitrary nature of the intersections is apparent.

2.2.6 Inside/Outside Determination

The intersection and constrained triangulation routines of sections 2.2.2 and 2.2.4
have resulted in a set of triangles which may now be uniquely classified as either
internal or exposed to the wetted surface of the configuration. The only step left is
then to delete the internal triangles. This is a specific application of the classic
“point-in-polyhedron” problem from computational geometry. We approach this prob-
lem with a ray-casting approach. This method fits particularly well within the
framework provided by the proximity testing algorithm and topological primitives
presented earlier (§1.5.1 and §2.2.2).

The point-in-polyhedron problem is a generalization of the point-in-polygon problem
in the plane. Figure 2-19 illustrates the two common approaches to this problem by
testing q for containment in a polygon P. On the left side of the sketch, the winding
number[39] is computed by completely traversing the closed boundary P from the per-

Figure 2-18: Example of constrained Delaunay retriangulation of intersected triangles for four
intersecting teardrop bodies.

− 60 −

2.2 Component Intersection

spective of an observer located at q, and keeping a running total of the signed angles
between successive polygonal faces. As shown in the left of the sketch, if then
the positive angles are erased by the negative contributions, and the total angular
turn is identically zero. If, however, , then the winding number is 2π. For a sim-
plicial polyhedron in 3-D, we can sum the solid angle included by each triangle in ∂P
and use a painting algorithm (§1.5.2) to traverse the faces of the polyhedron. In three
dimensions, of course, will be indicated by a solid angle of 4π.

The alternative to computing the winding number is to use a ray-casting approach.
As indicated in the right sketch of Figure 2-19, one casts a ray, r, from q and simply
counts the number of intersections of r with ∂P. If the point lies outside, , this
number is even, if the point is contained, , this result is odd.

While both approaches are conceptually straightforward, they are considerably dif-
ferent computationally. Computation of the winding number involves floating-point
computation of many small angles, each of which is prone to round-off error. The run-
ning sum makes these errors cumulative, increasing the likelihood of robustness pit-
falls. In addition the method poses the topological question “Inside or outside?” with
a floating-point comparison to zero or 2π. Ray-casting poses the inside/outside ques-
tion in topological (Does it cross?) terms.

A second drawback of using the winding number comes from consideration of
improving its asymptotic performance. For a polygon with N faces, both tests may be
conducted in linear time. However, the accumulation in the winding number necessi-
tates a visit to each face, making it unlikely to easily improve upon this performance.
Ray-casting, on the other hand, may be easier to accelerate, since the facets can be
pre-sorted. For example, if the ray is always cast in +x, then the polygonal segments

q P∉

q P∈

q P∈

Figure 2-19: Illustration of point-in-polygon testing using the (left) winding number
and (right) “ray-casting” approaches

q

P

q

P

∂P ∂P r

q P∉

q P∈

− 61 −

2.2 Component Intersection

of ∂P could be sorted in y, and inserted into a binary tree. The list of intersection can-
didates for the ray could then be identified with O(log N) operations.

Obviously the ray-casting approach fits well with the search and intersection frame-
work that we developed earlier. The preceding sections demonstrated that both the
intersection and triangulation algorithms could be based upon Boolean operations
checking the sign of the determinant in eq. 2.3, and the same is true for the ray cast-
ing step. Locate q at the centroid of any triangle in the configuration. Then assume r
is cast along a coordinate axis (+x for example) and truncated just outside the +x face
of the bounding-box for the entire configuration. This ray may then be represented
by a line segment from the test point (q0, q1, q2) to and the prob-
lem reduces to a proximity query of §1.5.1 followed by the segment-triangle intersec-
tion algorithm of §2.2.2. The tree returns the list of intersection candidates while the
signed volume in eq. 2.3 checks for intersections. Counting the number of such inter-
sections determines a triangle’s status as inside or outside. The only caveat in this
approach is that all the triangles in the configuration must be present in the ADT,
since we don’t know a-priori where the rays will pierce.

The painting algorithm presented in section 1.5.2 offers a method to avoid casting as
many rays as there are triangles. This allows each tested triangle to pass on its sta-
tus to the three triangles which share its edges. The algorithm then recurses upon
the neighboring triangles until a constrained edge is encountered at which time it
stops. In this way the entire configuration may be classified with few ray casts.

Figure 2-20 illustrates the ray-casting and painting procedure. The figure shows a
configuration of 3 teardrop shaped bodies, similar to those used to demonstrate the

∂Ω x ε q1 q2, ,+()

x0

x1

x2

Figure 2-20: Example of ray-casting combined with mesh painting. The three internal regions
shown were identified and painted using one ray per region

− 62 −

2.2 Component Intersection

retriangulation procedure. The component triangulation is shown in wireframe, and
three internal regions are shown painted. Each of the internal regions was seeded
with a single ray cast, and filled in with the painting algorithm. All the original tri-
angles on this entire configuration were painted with a total of 12 rays, correspond-
ing to the 12 regions of the geometry.

Figure 2-21 and Figure 2-22 present two brief examples. Figure 2-21 is an example
of a helicopter comprised of 82 components with 320,000 triangles. The configuration
includes external stores and armaments. The complete intersection, retriangulation
and removal of interior geometry required ~200sec on workstation with a 195 Mhz
MIPS R10000 processor. Figure 2-22 shows two close-ups of the inboard nacelle on a
high-wing transport configuration. The frame on the left shows the final geometry
after intersection, retriangulation and trimming, while the right frame shows a view
inside by removing the outboard section of the wing with a cutting plane through the
center of the nacelle. This configuration consisted of 86 components described by
214,000 triangles.

Figure 2-21: Helicopter example containing 82 components
including external stores and armaments.

− 63 −

2.3 Floating-Point Filtering and Exact Arithmetic

The HWT geometry in Figure 2-22 is a more detailed version of that shown earlier in
Figure 1-16 on page 24. There were over 10400 intersected triangles in this configu-
ration, and the average intersected triangle was divided into 6 smaller ones by the
constrained delaunay procedure. The largest of these retriangulation calls divided
an intersected triangle into 232 smaller triangles. During the intersection, on aver-
age the ADT returned 8 intersection candidates for each test triangle, and at most
1131 such candidates were returned.

2.3 Floating-Point Filtering and Exact Arithmetic

With the intersection, retriangulation and ray casting algorithms all wholly depen-
dent upon the determinant computation of eq. 2.3, it is imperative to insure accurate
evaluation of this volume. In fact, all of the operations establishing the connectivity
of the final exterior surface triangulation involve computation of the sign of this
determinant by design. As a result of this choice, the robustness of the overall proce-
dure ultimately equates to a robust implementation of the signed volume calcula-
tion. Fortunately, evaluation of this determinant has long been the subject of study
in computational geometry and computer science[28,36,50,80].

Figure 2-22: (left) Close-up of inboard nacelle of high-wing transport after intersection,
retriangulation and removal of interior geometry. The frame shows leading edge slat, wing
section, pylon, nacelle, nacelle strakes, and various other engine components. (right) View
inside after removal of internal geometry. The configuration consisted of 86 components
described using 214,000 triangles

− 64 −

2.3 Floating-Point Filtering and Exact Arithmetic

When the signed volume in eq. 2.3 (page 46) is computed for arbitrarily positioned
geometry, it can return a result which is positive (+1), negative (–1) or zero (0), where

 are non-degenerate cases and zero represents some geometric degeneracy. Note
that to this point in our discussion, the restriction to generally positioned data pro-
tected us from the zero case. Implementation of this predicate, however, can be some-
what delicate, since it requires that we distinguish round-off error from an exact
zero. Such considerations usually lead practitioners to implement the predicate with
exact arithmetic, either through extended floating-point precision or by integer rep-
resentations of the data. Unfortunately, while much hardware development has gone
into rapid floating point computation, few hardware architectures are optimized for
either the arbitrary precision floating-point or integer math alternatives.

2.3.1 Integer Arithmetic

The integer math alternative is quite common in computational geometry and graph
theory, and is making inroads in CFD. The approach can be considered an inflation
strategy, since it begins with the data being “inflated” to span the allowable range of
integers. Often, data is then perturbed slightly to its nearest allowable location on
the integer grid. The examples in references [36] and [69] rely on integer computa-
tions, as do the discussions and examples in reference [64]. Since the integers are a
special subset of the reals which can be represented exactly on computational hard-
ware, integer arithmetic is exact for the subset of integers which the hardware (or
software) can support. While a simple integer approach may just use the hardware’s
integer words, real-world examples generally require extended integer representa-
tions in software.

As an example of the need for extended integer representations, consider application
of the incircle predicate for a 2-D Delaunay triangulation using integer math. On a
32-bit machine, unsigned integers can represent numbers from zero to 4294967296.
However, the incircle predicate involves evaluating terms of the form due
the evaluation of the 3 x 3 determinant in eq. 2.3 and the mapping in eq. 2.9 which
involves squaring the coordinate data. The product of two p bit integers is exactly
representable in 2p − 1 bits, so the coordinate data in the domain must be represent-
able by only 8 bits. This result restricts the range of allowable input data to the
interval [0, 511]. Such low resolution is generally insufficient for real world geome-
tries. A variety of extended resolution integer packages are available, including that

1±

xa xb xc
2⋅ ⋅

− 65 −

2.3 Floating-Point Filtering and Exact Arithmetic

described in reference [23] and others available freely from the internet1 and com-
mercial sources. The mechanics of expansion schemes for extended precision integer
arithmetic are described in references [48,38].

Although they are attractive for implementing purely combinatorial algorithms,
integer methods can be restrictive for geometric algorithms which generate geome-
try. When a constructor generates new data, it must be moved to a topologically con-
sistent position on the integer grid, or represented internally with an extended
precision integer representation. Exact computation with extended precision data
leads to operations whose expense is dependent upon their context[96]. Thus software
arithmetic on long integer expansions can be computationally expensive.

Reference [69] describes an extended integer scheme for unstructured (tetrahedral)
mesh generation using expansions of character data types. This approach attempts
to avoid extensive use of software arithmetic by restricting input data to 30-bit inte-
ger resolution2. The method makes extensive use of an insphere predicate which
computes the signed volume of a simplex in 4 dimensions (see eq. 2.2). Computations
are carried out on the double-precision floating-point hardware, unless the result is
ambiguous due to extended bit-requirements. Cases which do require extended pre-
cision (reportedly 0.01%) are computed using the exact software arithmetic routines,
based upon multiple digit expansions using 8-bit digits. The technique of using the
floating-point hardware and “trapping” indeterminate cases is an example of float-
ing-point filtering. However, in this implementation there is still the drawback that
the “given” data must be initially perturbed to the integer grid.

2.3.2 Exact Floating-Point Arithmetic

An alternative to the exact integer arithmetic approach is offered by exact floating-
point computation[72,81]. This is also a “software arithmetic” approach, but it has the
attraction of not requiring initial data to be perturbed before the computation can
begin. The “given” geometry may be specified in floating-point, and the topological
predicates are evaluated using the standard floating-point hardware. In this case,
one constructs a floating-point filter by comparing the result of eq. 2.3 with an a-pos-
teriori estimate of the maximum possible value of the round-off error in the determi-
nant. If this error is larger than the computed signed volume then the case is

1. bigum, longnum, LIA, GNU calc and others.
2. Data is normalized to the interval [-109, 109] in each coordinate.

− 66 −

2.3 Floating-Point Filtering and Exact Arithmetic

considered indeterminate and it is re-evaluated using adaptive precision floating-
point arithmetic1.

3 x 3 or 4 x 4?
The simplex determinant for d-dimensional coordinate data (eq. 2.2) consists of the
coordinate data in the first d columns of the matrix, and a column of 1’s in the final
column. Linear Algebra reminds us that a determinant of this form may be reduced
in order by one. Eq. 2.3 makes use of this and expresses the signed volume of a tetra-
hedron as either a or a determinant. Computationally, however, these
forms are not equivalent, and the decision is not straightforward[81].

At first glance, it seems apparent that the form is preferable because expansion
of the determinant involves fewer terms making it less expensive. The subtraction in
the is menacing, however, since it can destroy the precision of the result even
before one begins evaluating the determinant. Therefore it is important to identify
the cases where this subtraction will result in round-off error and where it will be
exact.

This discussion on binary arithmetic uses the notation ⊕, and ⊗ to represent p-
bit floating-point addition, subtraction and multiplication. Results which cannot be
represented exactly with a p-bit significand use the round-to-even rule2, which is
consistent with the IEEE 754 standard for floating-point operations.

In reference [83], Sterbenz proves that:

If then . (2.10)

The floating-point subtraction of two p-bit numbers is exact if b is between a/2
and 2a. Intuitively this makes sense if one considers the binary representation of a
and b. If , then a and b have either the same exponent, or their expo-
nents may differ by one. When a and b have the same exponent, the subtraction is
simply subtraction of the mantissa of a and b. This result is clearly exact, and
expressible in p-bits. If the exponents differ by one, then the difference has the

1. Our implementation uses the adaptive precision floating-point package of ref. [81], see also [80].
2. “Round-to-even” is a tie-breaking rule, which is specified by the IEEE 754 standard as default. If a multiplica-
tion of two numbers yields a value which is halfway between 2 p-bit numbers, then the result is rounded to the
nearest p-bit representation with an even significand. For example, the binary number 11011 would be rounded
to 1.110 × 24 using p = 4 bits and the round-to-even rule for tie-breaking.

3 3× 4 4×

3 3×

3 3×

o

b
a
2
--- 2a,∈ a o b a b–=

a o b

b a 2Ú 2a,[]∈

− 67 −

2.3 Floating-Point Filtering and Exact Arithmetic

smaller of the two exponents, and can still be expressed in p-bits. Figure 2-23 illus-
trates this result with examples from reference [80].

As a result of the relationship in eq. 2.10, the floating-point subtraction in the
form of the signed volume computation (eq. 2.3) is exact if the coordinates of the
geometry meet the criteria in eq. 2.10. In practice, most surface triangulations con-
sist of objects which are relatively small by comparison with their distance to the ori-
gin, so the restriction that is not severe. For illustration, Figure 2-24
shows an example using the surface triangulation on a teardrop shaped body. In the
figure, triangles for which floating-point subtraction of their vertices is not exact are
shaded. As shown, the only triangles which violate this criterion lie near a coordi-
nate axes, so the vast majority of these triangles may use the simplex determi-
nant without incurring round-off error due to the initial coordinate subtraction.

2.3.3 Floating-Point Filtering and Error Bounds

As discussed in the first paragraph of the previous section, the strategy for accurate
and robust computation of the orientation test in eq. 2.3 may be outlined as follows:

Figure 2-23: Demonstration of exact floating-point subtraction from eq. 2.10. (following Ref.[80]).

a = 1 1 0 1
b = 1 0 1 0

a - b = 1 1

a = 1 0 0 1
b = 1 0 0 1

a - b = 1 0 0 1

× 21

3 3×

b a 2Ú 2a,[]∈

3 3×

Figure 2-24: The unshaded triangles may use the form of the simplex determinant in eq. 2.3
without incurring round-off error due to the initial subtraction of coordinate data.

3 3×

− 68 −

2.3 Floating-Point Filtering and Exact Arithmetic

1. Compute the orientation test (eq. 2.3) using data in floating-point
2. Compute maximum round-off error bound, εRE max, for the floating point evaluation with the

data in 1.
3. If the absolute magnitude of the signed volume from the orientation test is less than

the error. bound, recompute the orientation test using exact, adaptive precision float-
ing-point arithmetic.

The maximum error bound in step 2 is the quantity which filters out the question-
able floating-point computations. Derivation of this error bound is not immediately
intuitive, therefore, in this section we sketch the procedure.

Keeping track of the floating-point errors in a computation involves expanding each
operation into a result and an error term. For example when the real sum is
computed by the floating-point expression , the exact result expands into

,where x is the approximate value of the sum and y is the round-off error which
remains bounded. The magnitude of the round-off error for can be no
greater than , and must also be smaller than . Machine epsilon, ε, is pre-
cisely defined since it comes from the rounding in the last bit of the significand.
Using p-bit significands,

. (2.11)

On IEEE 754 compliant platforms, ε is 2-24 in single precision, and 2-53 in double.
One may check this on any platform by determining the largest exponent for which

 when both the sum and the equality are evaluated in floating-point.

To illustrate the procedure for deriving these error bounds, consider the 2-D form of
the orientation test. In two dimensions, the orientation test of eq. 2.3 may be
expressed with the following determinant.

(2.12)

Figure 2-25 shows an expression tree for the evaluation of this determinant. Follow-
ing reference [80], the expansions of sub-expressions in this tree are labeled with a t
for “true”. If t represents the true result of any expression , and x is the
result from floating-point, , then the error satisfies both and

. With this notation, if ti is the true result for any sub-expression i in the
figure, xi is its approximate counterpart.

a b+

a b⊕

x y,()

x a b⊕⇐

ε x ε a b+

ε 2
p–

=

1.0 2 p–⊕ 1.0=

A det

a0 a1 1

b0 b1 1

c0 c1 1

det
a0 c0– a1 c1–

b0 c0– b1 c1–

= =

a b+ t=

x a b⊕= t x ε x±=

t x ε t±=

− 69 −

2.3 Floating-Point Filtering and Exact Arithmetic

Figure 2-25 shows a list of approximate and true values in the expression tree. Float-
ing-point results have error associated with them, and this error is bounded by ε

scaled by the magnitude of the floating point result. For example the floating-point
product . From this, we can express each true term as an
approximate term and an associated error term.

(2.13)

The true value t6 plays the same role on the right side of the expression tree, giving:

(2.14)

With t5 and t6 complete, there is only one floating-point subtraction left at the top of
the expression tree.

(2.15)

x5 x1 x⊗ 2 x1x2 ε x5±= =

t5 t1t2= x1 ε x1±() x2 ε x2±()=

x1x2 2ε ε
2

+() x1x2±=

x5 ε x5± 2ε ε
2

+() x5 ε x5±()±=

x5 3ε 3ε
2

ε
3

+ +() x5±=

t1 t2 t3 t4

t5

a0 c0 b0 c0a1 c1b1 c1

t6

A

x5 x6

A = det
b0 - c 0

a0 - c 0 a1 - c 1

b1 - c 1

Figure 2-25: Expression tree for 2-D orientation predicate in eq. 2.21

t1 a0 c0–=

t2 b1 c1–=

t3 a1 c1–=

t4 b0 c0–=

t5 t1t2=

t6 t3t4=

tA t5 t6–=

x1 a0 o c0=

x2 b1 o c1=

x3 a1 o c1=

x4 b0 o c0=

x5 x1 x⊗ 2=

x6 x3 x4⊗=

xA x5 o x6=

True Values Approximate
Value

t6 x6 3ε 3ε2 ε3+ +() x6±=

tA t5 t6–= x5 x6 3ε 3ε
2

ε
3

+ +() x5 x6+()±–=

A ε A 3ε 3ε
2

ε
3

+ +() x5 x6+()±±=

− 70 −

2.3 Floating-Point Filtering and Exact Arithmetic

With eq. 2.5, the error bound is nearly in hand, only the ±ε|A| remains ambiguous.
However, recall that we are only interested in the sign of A. Taking advantage of this
fact, the sign of A must be correct, provided that

(2.16)

Dividing through by gives the bound on |A|.

(2.17)

Going from eq. 2.16 to eq. 2.17 involves expanding in series for the division by
, this series has been truncated at ε3 and rounded up in eq. 2.17, which con-

verts the “>” to the “≥” shown. As it stands in eq. 2.17, the error bound on A is not yet
directly applicable. Computation of the bound itself will incur an error of for
the addition of |x5| and |x6|, and another factor of for the product of the two
terms on the right side. Converting these two exact operations to their approximate
counterparts therefore multiplies the coefficient in eq. 2.17 by . Thus, the sign
of A is guaranteed to be correct if

. (2.18)

Unfortunately, the coefficient in this expression is not exactly expressible in p bits, so
we must round up to the next p bit number, This gives the final expression for the
error bound on the 2-D simplex determinant.

(2.19)

The coefficient must be computed (exactly) once at the beginning of the
computation, and may then be applied to the computed value of A by multiplying
with the sum of the minors |x5| and |x6| all using floating-point.

The right side of eq. 2.19 is the maximum value of the round-off error in computing
the 2-D simplex determinant in eq. 2.12. This bound accounts for not only possible
error in computing the determinant, but also for the error associated with computing
the bound itself.

A ε A 3ε 3ε
2

ε
3

+ +() x5 x6+()±±>

1 ε–() A 3ε 3ε
2

ε
3

+ +() x5 x6+()>

1 ε–()

A 3ε 6ε
2

8ε
3

+ +() x5 x6+()≥

1 ε–()

1 ε–()

1 ε–()

1 ε–()2

A 3ε 12ε2 24ε3+ +() x5 x6⊕()⊗≥

A 3ε 16ε
2

+() x5 x6⊕()⊗≥

3ε 16ε2+()

− 71 −

2.3 Floating-Point Filtering and Exact Arithmetic

Just as this bound was computed by examining the expression tree for the 2-D orien-
tation test, examination of the expression tree for the 3-D orientation test of eq. 2.3
permits us to derive an error bound for this predicate as well. Figure 2-26 shows the
expression tree for the 3-D predicate, which evaluates eq. 2.3 in its form.

The error bound, εRE max, for floating-point computation of the 3-D orientation test
may be computed following a derivation similar to that presented in the preceding
paragraphs, but with slightly more work. This error bound is:

(2.20)

Where the second term on the right side, , is the permanent of the
 matrix in eq. 2.3 (and Figure 2-26) evaluated in floating-point. These terms

are:

3 3×

t1

t2 t3 t4 t5

t6 t7

t8

t9 t10 t11

A

b0 d0 c0 d0b1 d1c1 d1

a2 d2

c0 − d0

b0 − d0

a0 − d0 a1 − d1 a2 − d2

b2 − d2b1 − d1

c1 − d1 c2 − d2

A = det

Figure 2-26: Expression tree for three dimensional orientation test of eq. 2.3, which
computes the signed volume of the tetrahedron Ta,b,c,d.

εREmax 7ε 56ε
2

+() αA αB αC⊕ ⊕()⊗=

αA αB αC⊕ ⊕()

3 3×

− 72 −

2.4 Tie-Breaking, Degeneracy and Virtual Perturbations

(2.21)

If the magnitude of the signed volume of the tetrahedron Ta,b,c,d is less than εRE max

from eq. 2.20, then the predicate must be evaluated using exact arithmetic. The
applications referred to in these notes use the package in reference [81].

In practice, only a very small fraction of the determinant evaluations ever get
trapped by this filter. For example, in the helicopter configuration shown earlier in
Figure 2-21, the intersection required 1.37M evaluations of the determinant, and of
these, only 68 (0.005%) failed to pass the floating point filter of eqs.2.20 and 2.21.

2.4 Tie-Breaking, Degeneracy and Virtual Perturbations

In expanding our discussion to permit degenerate data, its important to consider
how the orientation test in eq. 2.3 and the exact arithmetic will handle such cases.
The orientation test computes the signed volume of a tetrahedron Ta,b,c,d. Degener-
ate data result in a signed volume of identically zero, which implies that all four test
points are coplanar. This situation is referred to as a tie. With the exact arithmetic
routines in place, ties can be reliably identified, and so focus shifts to the topic of tie-
breaking. This section lifts the assumption of generally positioned data and we now
consider arbitrarily positioned geometry.

The richness of possible geometric degeneracies in three dimensions cannot be over-
stated, and without some systematic method of identifying and coping with them,
handling of special cases can permeate, or even dominate the design of a geometric
algorithm[26]. Rather than attempt to implement an ad-hoc tie-breaking algorithm
based on intuition and programmer skill, we seek an algorithmic approach to this
problem.

Simulation of Simplicity (SoS) is one of a category of general approaches to degener-
ate geometry known generically as virtual, or symbolic perturbation algo-
rithms[36,94,95]. The basic premise is to imagine that all input data undergoes a
unique, ordered perturbation such that all ties are broken (i.e. data in special posi-

αA a2 o d2
b0 o d0() c1 o d1()⊗ b1 o d1() c0 o d0()⊗⊕

 ⊗=

αB b2 o b2
c0 o d0() a1 o d1()⊗ c1 o d1() a0 o d0()⊗⊕

 ⊗=

αC c2 o d2
a0 o d0() b1 o d1()⊗ a1 o d1() b0 o d0()⊗⊕

 ⊗=

− 73 −

2.4 Tie-Breaking, Degeneracy and Virtual Perturbations

tion is perturbed into general position). When a tie is encountered, we rely on this
set of virtual perturbations to break the tie. Since the perturbations are both unique
and constant, any tie in the input geometry will always be resolved in a topologically
consistent manner. Since the perturbations are virtual, no given geometric data is
ever altered. When there is no tie, then the perturbations have no effect on the out-
come.

The perturbation ε(i, j) at any point is a function of the point’s index,
 and the coordinate direction, . Various researchers

have suggested perturbations of different forms, but here we consider that in refer-
ence [36]:

(2.22)

This choice indicates that the perturbation applied to ij is always greater than that
on kl iff or . This means that points with lower indices are
always perturbed more than points with higher indices, and on any one point, the
perturbation on the data of the lower coordinate directions is greater than that on
higher coordinate directions.

Figure 2-27 shows an example of this perturbation applied to a ray-casting problem
in 2-D to help demonstrate. In this example, a ray cast from pt. 5 in the original con-
figuration intersects improperly with segments 36, 47, 78, and 12, and is colinear
with 64 and 81. If a perturbation of the form in eq. 2.22 were applied, these degener-

i 0 1 � N 1–, , ,{ }∈ j 1 � d, ,{ }∈

ε i j,() ε
2

i δ j–⋅

= where

0 i N 1–≤ ≤

1 j d≤ ≤

δ d≥

i k<() i k=() j l>()∧

Real Configuration

1

23

45 6

7

8
x0

x1

Perturbed Configuration

Figure 2-27: Degeneracy breaking by virtual perturbation using the perturbation of eq. 2.22. For
clarity, perturbations only applied to the vertical (x1) coordinate.

3

7

8x0

x1
1´4´

6´
5´

− 74 −

2.4 Tie-Breaking, Degeneracy and Virtual Perturbations

acies would be resolved as shown in the lower part of the figure. Note that for clarity,
the data in the figure have only been perturbed in the vertical direction.

To illustrate the application of this scheme, consider again the two dimensional ver-
sion of the simplex determinant in eq. 2.2.

(2.23)

If the points a,b,c are assumed to be indexed with respectively, then tak-
ing δ = 2 gives a perturbation matrix with:

(2.24)

Taking the determinant of the perturbed matrix yields:

(2.25)

Since the data, a,b,c span a finite region in 2-space, intuitively one can always envi-
sion a perturbation small enough such that increasing powers of ε always lead to
terms with decreasing magnitude. Ref.[36] proves that this observation holds for a
perturbation of the form of eq. 2.22. If ever evaluates to an exact zero, the
sign of the determinant will be determined by the sign of the next significant coeffi-
cient in the ε expansion. If the next term also yields an exact zero, we continue
checking the signs of the coefficients until a non-zero term appears. In eq. 2.25 the
coefficient on the fifth term (ε3/2) is a constant (−1) and since sign(-1) is always nega-
tive, this term will never be degenerate.

Returning momentarily to the sketch in Figure 2-27, take points 4, 5, and 6 as points
a, b, and c, (respectively) in the determinant matrix of eq. 2.23. In this case, det[M]
would be exactly zero since all three points are colinear, and triangle ∆4,5,6 has zero

det M[] det

a0 a1 1

b0 b1 1

c0 c1 1

=

i 0 1 2, ,=

Λ
ε2 1– ε2 2–

1

ε22 1– ε22 2–
1

ε24 1– ε24 2–
1

=

MΛ M Λ+=

det MΛ[] det M[] ε1 4/ b0– c0+()+=

ε1 2/ b1 c1–()+ ε1 a0 c0–()+

ε3 2/ 1()+ ε2 a– 1 c1+()+

ε9 4/ 1–()+ �+

det M[]

− 75 −

2.4 Tie-Breaking, Degeneracy and Virtual Perturbations

area. However, the first term (ε1/4) in the ε expansion of eq. 2.25 dictates that this
degeneracy may be resolved by checking (-b0 + c0). Since point 6 is to the right of
point 5, this result is positive (+). Thus, ∆4´,5´,6´ is taken as having a positive area.
This implies that the tie-breaking scheme perceives point 6´ as lying below a line
segment joining 4´ to 5´, which is consistent with the sketch of Figure 2-27 for the
perturbed configuration.

The three dimensional variant of the simplex determinant (eq. 2.3) has 15 non-zero
coefficients before the first constant is encountered. Table 2.1 lists the hierarchy of
terms in the 3-D expansion, which is analogous to that given in eq. 2.25.

Table 2.1. The first 15 non-zero coefficients in
the expansion of the 3-D simplex determinant,

listed in increasing powers of ε.
Term exponent coefficient

1 ε0

2 ε1/8

3 ε1/4

4 ε1/2

5 ε1

6 ε5/4

7 ε3/2

det

a0 a1 a2 1

b0 b1 b2 1

c0 c1 c2 1

d0 d1 d2 1

det

b0 b1 1

c0 c1 1

d0 d1 1

1–()det

b0 b2 1

c0 c2 1

d0 d2 1

det

b1 b2 1

c1 c2 1

d1 d2 1

1–()det

a0 a1 1

c0 c1 1

d0 d1 1

det
c0 1

d0 1

1–()det
c1 1

d1 1

8 ε2

9 ε5/2

10 ε4

11 ε8

12 ε33/4

13 ε17/2

14 ε10

15 ε21/2 (+1)

det

a0 a2 1

c0 c2 1

d0 d2 1

det
c2 1

d2 1

1–()det

a1 a2 1

c1 c2 1

d1 d2 1

det

a0 a1 1

b0 b1 1

d0 d1 1

1–()det
b0 1

d0 1

det
b1 1

d1 1

det
a0 1

d0 1

Table 2.1 (Continued)

Term exponent coefficient

− 76 −

2.4 Tie-Breaking, Degeneracy and Virtual Perturbations

Figure 2-28 contains a deceptively simple looking application of the tie-breaking
algorithm. The large and small cubes in the sketch abut against each other exactly.
In addition to sharing the same geometry at location a, the cubes not only have three
coplanar faces, but also have exact improper intersections where edge bc abuts
against ad and elsewhere. The figure shows the result after computing the intersec-
tion, re-triangulating, and extracting the wetted surface. The virtual perturbation
scheme resolved these degeneracies by imposing virtual perturbations such that the
two polyhedra overlapped properly, consistently resolving not only the coplanar
degeneracy, but also all improper edge-edge intersections. This geometry required
504 evaluations of eq. 2.3, 186 of which evaluated to exactly zero and required tie-
breaking by the virtual perturbation scheme.

The exact arithmetic and tie-breaking routines may be implemented as “wrappers”
for the topological primitive in eq. 2.3. Thus the intersection, triangulation and ray-
casting algorithms remain unmodified, but now have been extended to consistently
treat geometry in special position. With this extension, the entire intersection algo-
rithm can now be robustly applied to any arbitrary geometry, even those with degen-
eracies.

a

b

c

d

Figure 2-28: Two improperly intersecting right parallelepipeds with degeneracies resolved
using virtual perturbations and exact arithmetic. (left) Sketch of components before
intersection showing degeneracy. (right) Result after intersection and tie-breaking.

a

a

c

c

b

d

− 77 −

3.1 Counting Arguments and Anisotropic Cell Division

3. Volume Meshing and Cut-Cells

Generation of the Cartesian volume mesh begins with the wetted surface of the con-
figuration extracted using the intersection process just discussed. Since there is no
longer any internal geometry in the surface description, the mesh generation task
has been substantially simplified. In general, Cartesian volume meshing is a very
straightforward process of nested cell division. Thus, the real technical challenge in
the design of an algorithm is to insure that it is as efficient, in both complexity and
memory usage, as possible. The volume meshing process will necessarily introduce
cut-cells into the domain, and the description of these cut-cells is closely linked to the
level of fidelity that one wishes to employ in applying boundary conditions for the
flow solver. Thus, in addition to focusing on generation of the final volume mesh, we
also present several levels of boundary condition modeling and outline the geometric
operations required to support them.

The mesh generation strategy outlined in this section views the mesh as an unstruc-
tured collection of Cartesian hexahedra (as in §1.4.3, page 20). While the alternative
approaches using octree or structured patches are also attractive, the unstructured
approach more readily preserves the ability to directionally refine the mesh cells.
This flexibility can be important since research has suggested that permitting only
isotropic refinement in three dimensions may lead to excessive numbers of cells for
geometries with many length scales and high aspect ratio components[3].

3.1 Counting Arguments and Anisotropic Cell Division

To demonstrate the importance of the ability to anisotropically divide Cartesian cells
in three dimensional meshes, consider the example shown in Figure 3-1. Shown is a
9 level adapted mesh and isobars in the discrete solution for a NACA 0012 at
M∞ = 0.8 and α = 1.25˚. This solution is characterized by a strong shock on the lee
surface, and a weak shock on the windward side. This example has been widely com-

− 78 −

3.1 Counting Arguments and Anisotropic Cell Division

puted in the literature[4]. With 9 levels of isotropic adaptation, the mesh scale at the
leading edge is ∆x = 0.39%C. Figure 3-2 compares the pressure coefficient distribu-
tion for this numerical solution with a reference solution from the literature[4]. With
9 levels of mesh refinement, the solutions compare well, indicating that the resolu-
tion is adequate for this case.

Although the mesh shown in Figure 3-1 appears 2-D, this example was actually com-
puted as a two dimensional flow over a three dimensional a unit span wing based on
the NACA 0012 profile. The mesh and solution shown are the projection of the full 3-
D solution on a 2-D cut through the mesh. The 2-D slice passes through 14240 cells,

Figure 3-1: Adapted mesh and isobars of discrete solution for unit span NACA 0012 at Mach
0.8 and 1.25˚ angle of attack. The 9 level adapted mesh has 1108839 total cells. The 2D slice

shown passes through 14280 cells.

− 79 −

3.1 Counting Arguments and Anisotropic Cell Division

but 9 levels of isotropic refinement resulted in a 3-D mesh with over 1.1M total cells.
While 14240 cells is reasonable for the two dimensional case, 1.1M cells is certainly
excessive for a unit span wing computation. Since the adaptation was isotropic, each
mesh refinement was forced to increase spanwise resolution as well. In the final
mesh, there are 256 3-D Cartesian cells for every fine mesh cell shown in the 2-D
mesh slice of Figure 3-1. Such excessive resolution can make Cartesian methods
uncompetitive as compared to body-fitted approaches.

The result in this example is certainly not unexpected. In typical structured or
unstructured computations, one generally uses high aspect ratio cells to increase the
resolution of some directions while leaving others relatively coarse. For Cartesian
mesh methods, this equates to permitting anisotropic cell division during mesh gen-
eration and adaptation.

In reference [3], examples such as this were used to frame counting arguments for
Cartesian mesh methods. These arguments suggested that in order to avoid exces-
sive numbers of final cells in three dimensions, Cartesian methods must necessarily
employ anisotropic cell division. The unit span example in Figures 3-1 and 3-2 is
actually relatively mild. More extreme demonstrations of these counting arguments
come from considering geometry with high aspect ratio components like a wing flap,
or a flap-vane. Such components frequently have aspect ratios in the range of 10-20,

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"AGARD/case1"
"ad2/cp.dat"
"ad1b/cp.dat"
"ad4/cp.dat"

AGARD Case 1 data
Cartesian Adapted - 6 levels
Cartesian Adapted - 7 levels
Cartesian Adapted - 9 levels

Figure 3-2: Cp vs. x/C for the unit span NACA 0012 example at Mach 0.8 and 1.25˚ angle of
attack. Cartesian data plotted using a piecewise constant extrapolation from the centroid
of the wall-cut Cartesian cell.

− 80 −

3.2 Volume Mesh Generation

and thus, proper streamwise resolution of these components makes anisotropic cell
division a necessity.

3.2 Volume Mesh Generation
We wish to capitalize on the simplicity of nested Cartesian meshes to produce an
algorithm which has linear asymptotic complexity. This aim is a reasonable since the
mesh geometry is well defined, and mesh locations may be generated by bisection of
parent cells, using only local information. The other main goal of this section is to
ensure that the scheme uses memory efficiently. The coordinate-aligned nature of
Cartesian meshes suggest many simplifications which the algorithm takes advan-
tage of in order to produce an efficient scheme.

3.2.1 Proximity Testing

Let {T} be the set of triangles describing the wetted surface of the configuration that
was constructed by the intersection algorithm in section 2. If, the NT surface trian-
gles in {T} are inserted into an ADT, then locating the subset Ti of triangles actually
intersected by the ith Cartesian cell will have complexity proportional to .
When a cell is subdivided, a child cell inherits the triangle list of its parent. As the
mesh subdivision continues, the triangle lists connected to a surface intersecting
(“cut”) Cartesian cell will get shorter by approximately a factor of 4 with each succes-
sive subdivision. Figure 3-3 illustrates the passing of a parent cell’s triangle list to
its children.

NT()log

Cut-Cell i

{Ti}, Triangles linked to i

“Children of i”

Triangles linked to
each child cut-cell

Figure 3-3: List of triangles associated with children of a cut-cell may be obtained using ADT, or
by exhaustively searching over the parent cell’s triangle list.

− 81 −

3.2 Volume Mesh Generation

This observation that implies that there is a machine dependent crossover beyond
which it becomes faster to simply perform an exhaustive search over a parent cell’s
triangle list, rather than perform an ADT lookup to get a list of intersection candi-
dates for cell i. This is easy to envision since all of the triangles that are linked to a
child cut-cell must have originally been members of the parent cell’s triangle list. If a
parent cell intersects only a very small number of triangles, then there is no reason
to perform a full intersection check using the ADT. The level of this crossover is pri-
marily determined by the number of elements in NT and the processor’s instruction
cache size. For the example problems with O(104) to O(106) triangles, the crossover
from ADT to exhaustive lookup typically occurs for cells with about .

As the cells continue to refine, cut-cells are linked to shorter and shorter triangle
lists. By conducting searches over the parent’s triangle list we take advantage of this
fact, and progressively smaller Cartesian cells can be intersected against T with ever
decreasing computational complexity.

3.2.2 Geometric Refinement

All surface intersecting Cartesian cells in the domain are initially automatically
refined a specified number of times (Rmin)j. Typically, this level is set to be 4 divi-
sions less than the maximum allowable number of divisions (Rmax)j in each direction.
When a cut cell is tagged for division, the refinement is propagated several (usually
3-5) layers into the mesh using a “buffering” algorithm which operates by sweeps
over the faces of the cells.

Further refinement is based upon a curvature detection strategy similar to that orig-
inally presented in reference [56]. This is a two-pass strategy which first detects
angular variation of the surface normal, , within each cut cell and then examines
the average surface normal behavior between two adjacent cut cells.

Taking k as a running index to sweep over the set of triangles, Ti, is the jth compo-
nent of the vector subtraction between the maximum and minimum normal vector
components in each Cartesian direction.

(3.1)

2000 NTi
5000< <

n�

V j

V j max nk j
() min nk j

()�= k T i∈∀

− 82 −

3.2 Volume Mesh Generation

The min(-) and max(-) are performed over all elements of Ti. The angular variation
within cell i is then simply the direction cosines of .

(3.2)

Similarly, (φj)r,s measures the jth component of the angular variation between any
two adjacent cut cells r and s. With denoting the unweighted unit normal vector
within any cut cell i, the components of are:

(3.3)

If θj or φj in any cell exceeds a preset angle threshold then the offending cell is tagged
for subdivision in direction j. Figures 3-4.a and 3-4.b illustrate the construction of φ
and θ in two dimensions.

Obviously, by varying φ and θ, one may control the number of cut-cells which are
tagged for geometric refinement. When φ and θ are identically 0˚, all the cut cells will
be tagged for refinement, and when they are 180˚ only those at sharp cusps will be
tagged. Figure 3-5 explores the sensitivity of the refinement to variation of these
parameters for angles ranging from 0˚ to 179˚ on three example configurations. For
the angle thresholds on the abscissa, the ordinate lists the number of cells which will
be in the resulting mesh after refinement (and adding 4 buffer layers). Three config-
urations are considered, the first is a HWT geometry with its high-lift system
deployed (see Figure 1-16), the second is a wing-fuselage (only) configuration con-
structed of the fuselage and wing from this same aircraft, and the third is a High
Speed Supersonic Transport (HSCT) configuration discussed in section 3.4. In all
three cases, varying the angle thresholds for geometric refinement is shown to vary

V

θ

Cell i

Ti
Figure 3-4.a: Measurement of

the maximum angular vari-
ation within cut-cell i.

Cell r Cell s
φ

Figure 3-4.b: Measurement of
the angular variation
between adjacent cut-cells.

n� r

n� s

θi j
()cos

V j

V
-------=

n� i

φr s,

φ j()
r s,

cos
n jr

n js
�

n� r n� s�
----------------------=

− 83 −

3.2 Volume Mesh Generation

the number of cells in the final mesh by approximately 50%, with most of the varia-
tion occurring before 50˚. In practice, these thresholds are generally set near 25˚.

3.2.3 Data Structures

The domain for a coordinate aligned Cartesian mesh may be defined by its minimum
and maximum coordinates and . Initially, this region is uniformly discretized
with Nj divisions in each Cartesian dimension, . The refinement
criteria of the previous section provide a method for identifying Cartesian cells near
features in the geometry, and by repeatedly dividing these cells and their neighbors
a final, geometry adapted mesh is obtained. Since we have adopted an unstructured
approach and intend to construct meshes with 106 or 107 cells, its imperative that
the data structures storing the mesh be as compact as possible. The system
described in this section provides all cell geometry and cell-to-vertex pointers in 96
bits.

Integer Coordinates
Figure 3-6 shows a model of the jth direction of a Cartesian mesh covering the region

. As shown in the sketch, specifying the domain with x0 and x1 and the initial
partitioning by Nj, uniquely identifies all possible Cartesian cell locations in this

cells vs angle threshold�

0 50 100 150 200

angle (deg)�

5.0E+4

1.0E+5

1.5E+5

2.0E+5

2.5E+5

3.0E+5

3.5E+5

of

 c
el

ls
�

wing+fuse�
hsct�
HWT�

Figure 3-5: Effect if varying angle threshold on number of cells produced after
refinement for three different configurations.

HWT Geometry + hi-lift, (Fig.1-16)

HWT Geometry, wing-fuselage only

HSCT Geometry

xo x1

j 0 1 � d, 1�, ,{ }=

x0 x1,[]

− 84 −

3.2 Volume Mesh Generation

region. Each additional refinement increases the maximum integer coordinate by a
factor of 2(Nj – 1). This relationship suggests a natural mapping to a system of inte-
ger coordinates. If one defines a maximum number of permissible cell divisions in
this direction, Rmaxj, then any point in such a mesh can be uniquely located by its
integer coordinates . If we allocate m bits of memory to store each integer ij,
the upper bound on the permissible total number of vertices in each coordinate direc-
tion is 2m.

Figure 3-6 demonstrates that on a mesh with Nj prescribed nodes, performing Rj cell
refinements in each direction will produce a mesh with a maximum integer coordi-
nate of which must be resolvable in m bits.

(3.4)

Thus, the maximum number of cell subdivisions that may be addressed by a set of m-
bit integer coordinates is:

(3.5)

i0 i1 i2, ,()

jth Directionx0 x1

Nj = # of Prescribed locations

ij

x0 x1

x0 x1

of locations = 21(Nj – 1) + 1

x0 x1

of locations = 22(Nj – 1) + 1

Num. of Cell
Divisions

0

1

2

Rmaxj

of locations = 2Rmaxj(Nj – 1) + 1 = Mj

Figure 3-6: Specification of integer coordinate locations for a coordinate direction with Nj
prescribed locations.

2Rj N j 1�() 1+

2
Rj N j 1�() 1 2

m
≤+

Rmax()
j 2

2
m

1�()log
2

N j 1�()log�=

− 85 −

3.2 Volume Mesh Generation

where the floor “ ” indicates rounding down to the next lower integer. Substituting
back into eq. 3.4 gives the total number of vertices which we can address in each
coordinate direction using m-bit integers and with Nj prescribed nodes in the direc-
tion.

(3.6)

Thus, the floor in eq. 3.5 insures that Mj can never exceed 2m. Figure 3-7 illustrates
the integer coordinate numbering scheme in three dimensions.

With the maximum integer coordinate of each direction defined, the geometric loca-
tion, x, of the point with integer coordinates i may be expressed with a simple vector
relation.

(3.7)

The examples in these notes use up to bits per direction which gives about
 addressible locations in each coordinate direction. This choice has the

advantage that all three indices may then be packed into a single 64-bit integer for

M j 2
Rmax j N j 1�() 1+=

0

1

2

M1 p
artitio

ns

M
2

pa
rt

it
io

n
s

M
0 partitions

x10
x11

x12
, ,()

xo0
xo1

xo2
, ,()

Figure 3-7: Cartesian mesh with Mj total divisions in each direction discretizing
the region from xo to x1.

x x0
i

M
----- x1 x0�()+=

m 21=

2.1 106×

− 86 −

3.2 Volume Mesh Generation

storage1. Since most 32-bit architectures support 64-bit integers2, comparisons
between integer coordinates may then be performed with a single operator, rather
than one operator for each integer coordinate.

Cell-to-Node Pointers
Figure 3-8 gives an example of the vertex numbering within an individual Cartesian
cell. This system has been adopted by analogy to the study of crystalline structures
specialized for cubic lattices3. Within this framework, the cell vertices are numbered
with a boolean index of 0 (low) or 1 (high) in each direction. Following this ordering,
Figure 3-8 shows the crystal direction of each vertex in square brackets (with no
commas). Reinterpreting this 3-bit pattern as an integer yields a unique numbering
scheme (from 0-7) for each vertex on the cell.

For any cell i, is the integer position vector of its vertex nearest to
the x0 corner of the domain. If we also know the number of times that cell i has been
divided in each direction, Rj, we can express its other 7 vertices directly.

1. This is a choice of convenience. All three integer coordinates may, of course, be stored separately, which would
give 264 -1 = 1.84 x 1019 addressible integer locations in each coordinate direction.
2. Verified on MIPS R4000, HP9000, RISC R6000, SPARC and Pentium CPUs.
3. Such systems are quite general and can be used to describe cubic, orthorhombic, tetrahedral, or hexagonal
cells. See [86].

0

1

2

[000]

[010]

[011]

[001]

[100]

[101]
[111]

[110]

V0

V4

V1

V5

V2

V6

V3

V7

Figure 3-8: Vertex numbering with in a cell, numbers in
square brackets [-] are the crystal directions of each vertex.

V 0 V 00
V 01

V 02
, ,()

− 87 −

3.3 Boundary Conditions and Cut-Cell Intersection

(3.8)

Since the powers of two in this expression are simply a left shift of the bitwise repre-
sentation of the integer subtraction , vertices V1 through V7 can be com-
puted from V0 and Rj at very low cost. In addition, the total number of refinements in
each direction will be a (relatively) small integer, thus its possible to pack all three
components of into a single 32-bit word.

3.3 Boundary Conditions and Cut-Cell Intersection

3.3.1 Cut-Cell Boundary Fidelity
At wall boundaries, Cartesian cells are cut arbitrarily by the body geometry. This
intersection may be described to the flow solver with various degrees of fidelity. Ref-
erence [3] categorized this description into three levels of approximation. Boundary
conditions fitting this classification have been investigated by a variety of
authors[3,18,40,67,70].

Level 1: The volume of each cut-cell which is inside the flow is computed by
subtracting out the volume of the cell which protrudes into the wall. In
the sketch in Figure 3-9.b this resulting cut-cell volume is

V1 V0 0 0 2
Rmax2 R2�

, ,()+=

V2 V0 0 2
Rmax1 R1�

0, ,()+=

V3 V0 0 2
Rmax1 R1�

2
Rmax2 R2�

, ,()+=

V4 V0 2
Rmax0 R0�

0 0, ,()+=

V5 V0 2
Rmax0 R0�

0 2
Rmax2 R2�

, ,()+=

V6 V0 2
Rmax0 R0�

2
Rmax1 R1�

0, ,()+=

V7 V0 2
Rmax0 R0�

2
Rmax1 R1�

2
Rmax2 R2�

, ,()+=

Rmax j R j�

R

Figure 3-9: A general interior cell and two different models for surface cut-cells.

S 1

S 2

S 3

S 4

Interior Cell

S 1

S 2

S 3

S 4

Cut-Cell with planar approx.

S 1

S 2

S 3

S 4

Cut-Cell with subcell resolution

(a) (b) (c)

S 5
a

b c

Ω ΩΩ

− 88 −

3.3 Boundary Conditions and Cut-Cell Intersection

. A single additional surface vector is kept to model the
boundary which may be computed using the divergence theorem.

Level 2: In addition to (1), the intersection of the body surface with the cell is
computed and stored. In three dimensions, this implies this information
requires that the one store the intersections of the Cartesian edges with
the body surface. The state vector for the flow computation is stored at
the centroid of the flow-through region of the cut cell (the dotted region
in Figure 3-9.b). Centroids of the cut-faces of the Cartesian cell may
also be computed. The surface normal of the body is still inferred from a
planar approximation.

Level 3: In addition to (2), sub-cell information about the variation of the
surface within the cut cell is computed. The integration of the cut-cell
follows a path conforming to the actual boundary (see Figure 3-9.c).

Numerical boundary conditions using all three levels of modeling have been formu-
lated in the literature (see [3, 18, 32, 40, 70] among others). The investigations in [3]
indicated that boundary conditions based on level 2 or 3 modeling may reduce the
truncation error at the wall by as much as an order of magnitude over level 1 imple-
mentations, and reference [41] has demonstrated fully second-order boundary condi-
tions for planar walls based on the information in level 2 modeling.

3.3.2 Cut-Cell/Surface Intersection

Implementation of these numerical boundary conditions requires the intersection of
the body cut Cartesian cells with the surface triangulation. While the general edge-
triangle intersection algorithm in section 2.2.2 offers one method of testing for such
intersections, a more attractive alternative capitalizes on simplifications stemming
from the fact that the target regions are Cartesian cells.

In three dimensions, the surface triangulation will cut arbitrarily through the body
intersecting Cartesian cells. These intersections can be quite complex. We can begin
to understand the details of such an intersection by considering the generic cut-cell
illustrated in Figure 3-10. The abstraction shown in the sketch presents a single cut-
cell, c, which is linked to a set {Tc} of four triangles (T0-T3) which comprise the small
swatch of the configuration’s surface triangulation intersected by the cell. Since both
the Cartesian cell and the triangles are convex, the intersection of each triangle with
the cell produces a convex polygon referred to as a triangle-polygon, tp. Edges of the
triangle-polygons are formed by the clipped edges of the triangles themselves, and
the face-segments, fs, which result from the intersection of the triangles with the

V VΩ V∆abc�=

− 89 −

3.3 Boundary Conditions and Cut-Cell Intersection

faces of the Cartesian cell. The faces of the Cartesian cell may also be intersected by
the surface triangles. Such intersections produce face-polygons, fp, which consist of
edges from the cut-cell and face segments from the triangle-face intersection. Note
that the face-polygons are not necessarily convex. This is demonstrated by the non-
convex face-polygons fp0,1, fp5,0, and fp5,1 in Figure 3-10. Supporting the entire hier-
archy of boundary modeling discussed in the previous section requires us to fully
specify each of these geometric entities for every cut Cartesian cell.

Obviously, these intersections may become very complex. Its easy to envision the
pathological case where an entire configuration intersects only one or two Cartesian
cells, creating tens of thousands of triangle polygons. Thus, an efficient implementa-
tion is of paramount importance. The algorithms for efficiently constructing this
geometry rely on techniques from the literature on computer graphics and are highly
specialized for use with coordinate aligned regions[30,87]. In principle, similar meth-
ods could be adopted for non-Cartesian hexahedra, or even other cell types, however,
speed and simplicity would be compromised. Since rapid cut-cell intersection is an
important part of Cartesian mesh generation, we present a few central operations in
detail.

Rapid Intersection with Coordinate Aligned Regions
Figure 3-11 shows a two dimensional Cartesian cell c which covers the region .
The points (p, q,...,v) are assumed to be vertices of c’s candidate triangle list Tc. Each
vertex is assigned an “outcode” associated with its location with respect to cell c. This

− Hex cell faces
− Face polygons
− Face segments
− Intersected Triangles
− Intersected Triangle polygons

fs01

fs00

fs52
fs51

fs50

T1

T2
T0

T3

tp0

tp1
tp2

tp3

fp01

fp30

fp51

F[0−5]
fp[face#][poly#]
fs[face#][seg#]
T[0−n]

tp[0−n]

fp00

x

x
fp50

1

0

x2

Figure 3-10: Anatomy of an abstract cut-cell.

c d,[]

− 90 −

3.3 Boundary Conditions and Cut-Cell Intersection

code is really an array of flags which has a “low” and a “high” bit for each coordinate
direction, . Since the region is coordinate aligned, a single
inequality must be evaluated to set each bit in the outcode of the vertices. Points
inside the region, [c, d], have no bits set in their outcode.

Using the operators & and | to denote bitwise applications of the “and” and “or” bool-
ean primitives, candidate edges (like rs) can be trivially rejected if

outcoder & outcodes ≠��0 (3.9)

which reflects the fact that the outcodes of both r and s will have their low x bit se,
thus neither point may be inside the region. Similarly, since (outcodet |

outcodev) =��0, the segment tv must be completely contained by the region [c, d] in
the figure.

If all the edges of a triangle, like ∆tuv, cannot be trivially rejected, then there is a pos-
sibility that it intersects the 0000 region. Such a polygon can be tested against the
face-planes of the region by constructing a logical bounding box (using a bitwise “or”)
and testing against each facecode of the region. In Fig. 3-11 testing

facecodej & (outcodet | outcodeu | outcodev) ∀ j∈{0, 1, 2, ..., 2d-1} (3.10)

results in a non-zero only for the 0100 face. In eq. 3.10, the logical bounding box of
∆tuv is constructed by taking the bitwise “or” of the outcodes of its vertices.

lo0 hi0 � lod 1� hid 1�,, ,,[]

1000 0100

0010

00011001

1010 0110

0101

0000

facecode1=0100

f
a
c
e
c
o
d
e
0
=
1
0
0
0

facecode2=0010

facecode3=0001

p

qr

s

t u

v

t’

p’

(c0, c1)

(d0, d1)

Figure 3-11: outcode and facecode setup of a coordinate
aligned region in two dimensions.c d,[]

− 91 −

3.3 Boundary Conditions and Cut-Cell Intersection

When a constructed intersection point, such as p´ or t´, is computed (with the method
in §2.2.3), it can be classified and tested for containment on the boundary of by
examination of its outcode. However, since these points lie degenerately on the 01XX
boundary, the contents of this bit may not be trustworthy. For this reason, we mask
out the questionable bit before examining the contents of these outcodes. Applying
“not” in a bitwise manner yields:

(outcodep´ & (¬facecode1)) = 0 while (3.11)

(outcodet´ & (¬facecode1)) ≠ 0

which indicates that t´ is on the face, while p´ is not.

There are clearly many alternative approaches for implementing the types of simple
queries that this section describes. However, an efficient implementation of these
operations is central to the success of a Cartesian mesh code. The bitwise operations
and comparisons detailed in the proceeding paragraphs generally execute in a single
machine instruction making this a particularly attractive approach.

Polygon Clipping
With the fast spatial comparison operators in the previous section outlined, we are
ready to construct the triangle-polygons and face-segments which describe the sur-
face within the Cartesian cell. The triangle-polygons (tp0-tp4) in Figure 3-10 result
from the intersection of each triangle in {Tc} with the Cartesian cell itself. Notice,
however, that these triangle-polygons are not the formal intersection of the boundary
of the Cartesian cell with the triangle, this intersection results in only the face-seg-
ments. The triangle-polygons are the regions of the triangles which lie within the
cut-cells. Thus, extraction of the triangle-polygons is properly thought of as a clip-
ping operation.

In the field of computer graphics, the term “clipping” refers to an intersection where
one object acts as a “window” and we compute the parts of a second object visible
through this window[39]. The most common type of clipping is when one object is a
rectangle or a cube and various algorithms have been proposed for this case[53,61]. In
this section we apply an algorithm due to Sutherland and Hodgman for clipping
against any convex window[84]. While slightly more general than is absolutely neces-
sary, this algorithm has the attractive property that the output polygon is kept as an
ordered list of vertices which neatly maps into the winged-edge data structure dis-
cussed earlier (see §1.4.3).

c d,[]

− 92 −

3.3 Boundary Conditions and Cut-Cell Intersection

The asymptotic complexity of this clipping algorithm is O(pq), where p is the degree
of the clip window and q is the degree of the clipped object. While this time bound is
formally quadratic, p for a Cartesian cell is only 6, and the fast intersection checks of
the previous section promote very effective filtering of trivial cases.

The Sutherland-Hodgman algorithm adopts a divide-and-conquer strategy which
views the entire clipping operation as a sequence of identical, simpler problems. In
this case the process of clipping one polygon against another is transformed into a
sequence of clips against an infinite edge. Figure 3-12 illustrates the process for an
arbitrary polygon clipped against a rectangular window. The input polygon is clipped
against infinite edges constructed by extending the boundaries of the clip window.

Essentially the algorithm is implemented as two nested loops. The outer loop sweeps
over the clip-border (cell faces in 3-D), while the inner is over the edges of the poly-
gon. In our application to the intersected triangles, the initial input polygon is the
triangle T, and the clip-window is the cut Cartesian cell. Implementation of the algo-
rithm requires testing of the input triangle’s edges against the clip region, so its use-
ful to combine this algorithm with the outcode flags discussed in the previous
section.

Figure 3-12: Illustration of divide-and-conquer strategy of Sutherland-Hodgman
polygon clipping. The problem is recast as a series of simpler problems in which
a polygon is clipped against a succession of infinite edges.

Clip

Input Polygon

Clip Window

Output Polygon

Output Polygon

Clip 1: Clip 2: Clip 3: Clip 4:

Infinite Clip Boundary

− 93 −

3.3 Boundary Conditions and Cut-Cell Intersection

Figure 3-13 illustrates the clipping problem for generating the triangle-polygons
shown in the view of an abstract cut-cell in Figure 3-10 (page 89). In the sketch
above, the triangle T is formed by the set of directed edges, , , and , and
the clipped polygon, tp, is a quadrilateral.

As the edges of the input polygon are processed by each clip-boundary the output
polygon is formed according to a set of four rules. For each directed edge in the input
polygon we denote the vertex at the origin of the edge as “origin” and the vertex of
the destination as “destination”. “IN” implies that the test vertex is on the same
side of the clip-boundary as the clip-window. We may test for this by examining the
outcode of each vertex, and comparing to the facecode of the current-clip boundary. A
test vertex is “IN” if its outcode does not have the bit associated with the facecode of
the clip-boundary set, while “OUT” implies that this bit is set. Using the bitwise
operators from the previous section:

if (facecode(clip-boundary) & outcode(vertex) = 0) then IN (3.12)
if (facecode(clip-boundary) & outcode(vertex) ≠ 0) then OUT

With these definitions, the output polygon is constructed by traversing around the
perimeter of the input polygon and applying the following rules to each edge:

SH.1. If ((origin is IN) and (destination is IN)) →Add destination to the output
polygon.

SH.2. If ((origin is IN) and (destination is OUT)) →Add intersection of edge and clip-
boundary to the output polygon.

SH.3. If ((origin is OUT) and (destination is OUT))→Do nothing.
SH.4. If ((origin is OUT) and (destination is IN)) →Add both intersection and des-

tination to output polygon.

v1v0 v2v1 v0v2

1000 0100

0010

00011001

1010 0110

0000

facecode1=0100

f
a
c
e
c
o
d
e
0
=
1
0
0
0

facecode3=0001

(c0, c1)

(d0, d1)

0101

facecode2=0010

v0

v1

v2

T tp

Figure 3-13: Setup for clipping a candidate triangle, T, against a coordinate aligned
region and extracting the clipped triangle, tp.

p

− 94 −

3.3 Boundary Conditions and Cut-Cell Intersection

Several aspects of these construction rules merit comment. Notice that both SH.2
and SH.4 consider cases where the edge of the input polygon crosses the clip-bound-
ary. In both of these cases, we must add the point of intersection of the edge with the
clip-boundary to the output polygon. This point may be easily constructed using the
pierce-point constructor from §2.2.3, however, since our clip-boundary is coordinate
aligned, we may dramatically simplify the eqs.2.6-2.8. For the example in Figure 3-
13, the constructor for point p which is the intersection of edge with the right
side of the clip-boundary reduces to:

(3.13)

where α is simply the distance fraction in the horizontal coordinate of the clip bound-
ary between vertices v1 and v2.

Returning to the cut-cell shown in Figure 3-10, we note that the face-segments are
the edges of the triangle-polygons (just created) that result from a clip. The face-
polygons are formed by simply connecting loops of cut-cell edges with these face-seg-
ments. Thus, all the necessary elements of the cut-cell have been constructed.

Since the Sutherland-Hodgman algorithm was originally developed for window clip-
ping in computer graphics, both hardware and software versions of it are available
on many platforms. Thus, on platforms with advanced graphics hardware, it is fre-
quently possible to make direct calls to the hardware clipping routines to perform
the polygon clipping discussed in the preceding paragraphs. Such hardware imple-
mentations typically execute tens to hundreds of times faster than software imple-
mentations. Similarly, many of the fast bitwise comparators in the previous section
are often available as hardware routines.

Clipping Performance
Section 3.2.1 reasoned that by inheriting parent cell’s triangle lists, the complexity of
proximity searching for intersecting triangles would decrease as the cells refine and
these lists become shorter. This same argument holds for the formation of the trian-
gle-polygons within the cut-cells. As illustrated by Figure 3-3, as the cells refine,
they are linked to fewer and fewer triangles, thus, there are fewer triangle-polygons
to construct within each cut-cell. Table 3.1 chronicles the performance of the Suther-
land-Hodgman routine for several example computations performed with the attack
helicopter configuration shown in Figure 1-2 on page 7. The polygon clipping in this

v2v1

p v1 α v2 v1�()+=

− 95 −

3.3 Boundary Conditions and Cut-Cell Intersection

example was performed using a software implementation of the Sutherland-Hodg-
man routine and the fast bitwise comparators.

An examination of the data in Table 3.1 reveals that, as predicted, the average time
spent processing each cut-cell decreases as the mesh is refined. The average time to
extract the triangle-polygons on the coarsest mesh (with 21578 cut-cells) was
7.6 x10-5 sec/cut-cell. While cut-cells on the finest mesh were processed at a rate of
2.15 x10-5 sec/cut-cell. On the finest mesh there were 387130 cut-cells which were
linked to a total of approximately 930000 triangles, and clipping these triangles
required a total of 8.33 sec. Thus the Sutherland-Hodgman algorithm had an aver-
age processing rate of just over 110000 triangles/second. A detailed profile of this
algorithm revealed that the floating-point construction operation in eq. 3.13
accounted for fully one third of the processing time. This result indicates that the
logic and bitwise operators in the clipping routines have relatively little overhead.

Figure 3-14 shows an example of the intersection between the body-cut Cartesian
cells and the surface triangulation of a High Wing Transport configuration. In this
case approximately 500000 cells in the Cartesian mesh intersected the surface trian-
gulation. The figure shows a view of the port side of the aircraft and two zoom-boxes
with successive enlargements of the triangle-polygons resulting from the intersec-
tion. In this example, the triangle-polygons have (themselves) been triangulated
before plotting. This example contained about 2.9M cells in the full Cartesian mesh.

a. Timings performed on 195 Mhz MIPS R10000 CPU.

Table 3.1. Performance of clipping routine for creating triangle-polygonsa

Number of Cut-cells
Avg. No. of

Triangles/cut-cell
Total

Time (sec)
Avg. Time/Cut-cell

(sec)

21578 10.8 1.64

43252 6.7 2.10

99751 4.3 3.89

387130 2.4 8.33

7.6
5�

×10

4.87
5�

×10

3.90
5�

×10

2.15
5�

×10

− 96 −

3.4 Example Cartesian Meshes

3.4 Example Cartesian Meshes

The intersection algorithm described in section 2 and the mesh generator strategy
covered in the preceding paragraphs have been exercised on a variety of example
problems. All of the computations presented here were performed on a MIPS R10000
workstation with a 195Mhz CPU.

High Speed Civil Transport (HSCT)
Figure 3-15 depicts three views of a 4.72M cell mesh constructed around a proposed
supersonic transport design. This geometry consists of 8 polyhedra, two of which
have non-zero genus. These components include the fuselage, wing, engine pylons
and nacelles. The original component triangulation was comprised of 81460 triangles
before intersection and 77175 after the intersection algorithm re-triangulated the

Figure 3-14: Triangle-polygons on surface of High Wing Transport configuration resulting from
intersection of body-cut Cartesian cells with surface triangulation. The triangle-polygons
shown have been (themselves) triangulated for plotting purposes. This example included
approximately 500000 body-cut Cartesian cells.

− 97 −

3.4 Example Cartesian Meshes

intersections and extracted the wetted surface. The component intersection placed
1.2M calls placed to the determinant computation (eq. 2.3), 1037 of these invoked the
exact arithmetic and of these, 870 were truly degenerate and required tie-breaking
by virtual perturbation. The intersection required 15 seconds of workstation time.

The mesh shown contains 11 levels of cells where all divisions were isotropic. Mesh
generation required 4 minutes and 20 seconds. The maximum memory required was
252Mb.

Multiple Aircraft Configuration
The final configuration begins with the attack helicopter example from Figure 1-2 on
page 7, and then adds three twin-tailed fighter models to the geometry. The helicop-
ter in this example is off-set from the axis of the lead fighter to emphasize the asym-
metry of the mesh. Each fighter has flow-through inlets and is described by 13

Figure 3-15: Upper: Cutting planes through 4.72M cell Cartesian mesh for a proposed HSCT
geometry. Lower: Close-up of mesh near outboard nacelle.

− 98 −

3.4 Example Cartesian Meshes

component triangulations. The entire configuration contained 121 components
described with 807000 triangles before the component intersection of section 2, and
683000 triangles after the internal geometry was trimmed out. A total of 5916 deter-
minant evaluations (eq. 2.3) were identified as degenerate by the exact arithmetic
routines and invoked the virtual perturbation routines described in section.

Figure 3-16 presents two views of the final mesh. The upper frame shows portions of
3 cutting planes through the geometry. The lower frame in this figure shows one cut-
ting plane at the tail of the rear two aircraft, and another just under the helicopter
geometry. The volume mesh includes 5.61M cells, of which 488000 intersect the
geometry. This case required a maximum of 365Mb to compute, including storage of

Figure 3-16: Cutting planes through mesh of multiple aircraft configuration with 5.61M cells
and 683000 triangles in the triangulation of the wetted surface.

− 99 −

3.5 Asymptotic Performance

the surface triangulation and the volume mesh. The total mesh generation time was
approximately 6 minutes and 30 seconds which includes approximately 15 seconds
for the formation of the polygon clipping described in the previous section (§ 3.3.2).

3.5 Asymptotic Performance
Section 1.3.4 briefly touched on the topic of asymptotic complexity for unstructured
Cartesian mesh methods. Two of the primary factors effecting mesh generation
speed are the number of triangles in the surface description and the percentage of
the mesh cells which actually intersect this boundary. The examples in the previous
section have been chosen to demonstrate mesh generation speed on realistically com-
plex geometries.

Figure 1-4 on page 10 presented a scatter plot of mesh size vs. CPU time in order to
assess the asymptotic behavior of the algorithm. For that investigation, the mesh
generator was run on a teardrop geometry described by 7520 triangles. To prevent
variation in the percentage of cut cells which are divided at successive refinements,
the angle thresholds triggering mesh refinement were set to zero. This choice forced
all cut cells to be tagged for refinement at every level.

Results from a series of 11 meshes are displayed in that figure, these contained
between 7.5x103 and 1.7x106 cells in the final grids. The initial meshes used con-
sisted of 6x6x6, 5x5x6, and 5x5x5 cells and were subjected to 3-9 levels of refinement.
As shown by the plot in Figure 1-4 this investigation demonstrated linear asymptotic
performance and produced cells ar a rate of approximately 24950 cells-per-second
(1.50x106 cells-per-minute). See the discussion in section 1.3.4 for further details.

3.6 Future Work
One aspect which has not been completely addressed is the degree to which anisotro-
pic cell division can be used to improve the efficiency of adaptive Cartesian simula-
tions on realistic geometries. Since the current method has the ability to refine cells
directionally, this topic will be addressed in future work.

The other outstanding issue surrounding adaptive Cartesian mesh methods con-
cerns, of course, viscous approaches. While some progress has been made in hybrid
Cartesian-prismatic meshes, results have not been completely satisfying, and
research continues on this topic.

− 100 −

Acknowledgments

Much of the work described in these notes was done in collaboration with my co-investiga-
tors Marsha Berger (Courant Institute) and John Melton (NASA Ames). I thank Marsha for
several of the analyses included in these notes as well as many long hours of writing (and
debugging) C code. John gets credit not only for initially introducing me to the possibilities of
Cartesian mesh methods, but also for either initiating or contributing to many of the ideas
that have been presented in these notes. John’s research and thesis work has provided moti-
vation for many of the algorithms discussed in the preceding pages.

I would also like to thank Ken Powell, Eric Charlton, and Sami Bayyuk for many thoughtful
discussions and permission to reprint some of their results in these notes. Ken’s contribu-
tions - both personally and through his students - have had a major effect on our Cartesian
grid work at Ames.

In addition, I am grateful to Diane Poirier, and Datta Gaitonde for their long hours spent
proofreading and helping to clarify some of the discussions and arguments presented in
these pages. Finally, I thank Jonathan Shewchuk both for discussions on floating-point error
estimation and the use of his adaptive-precision floating-point library.

− 101 −

References

[1] Aftosmis, M.J., “Emerging CFD Technologies and Aerospace Vehicle Design,” NASA
Wkshp. on Surf. Mod., Grid Gen., and Related Issues in CFD, NASA Lewis Rsch Cntr.,
May 9-11, 1995.

[2] Aftosmis, M.J., Berger, M.J., Melton, J.E., “Robust and efficient Cartesian mesh gen-
eration for component-based geometry,” AIAA Paper 97-0196, Jan. 1997.

[3] Aftosmis, M.J., Melton, J.E., and Berger, M.J., “Adaptation and Surface Modeling for
Cartesian Mesh Methods,” AIAA Paper 95-1725-CP, Jun., 1995.

[4] AGARD Fluid Dynamics Panel, “Test cases for inviscid flow field methods,” AGARD
Advisory Report AR-211. May 1985.

[5] Almgren, A.S., Bell, J., Colella, P., and Howell, L., “An adaptive projection method for
the incompressible Navier-Stokes equations,” Proc. IMACS 14th World Conference,
Atlanta, GA, July 1994.

[6] Almgren, R., and Almgren, A.S., “Phase field instabilities and adaptive mesh refine-
ment,” Modern Methods for Modeling Microstructure in Materials. TMS-SIAM, Oct
1995.

[7] Aurenhammer, F., “Voronoi diagrams: A survey of a fundamental data structure,”
ACM Comput. Surveys 23:345-405, 1991.

[8] Bailey, D.H., A Portable High Performance Multiprecision Package. NASA TR-RNR-
90-022

[9] Barth, T.J., Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler
and Navier-Stokes Equations, von Karman Institute for Fluid Dynamics, Lecture
Series 1994-05, Rhode-Saint-Genèse, Belgium, Mar. 21-25, 1994.

[10] Barth, T.J., and Jespersen, D.C., “The design and analysis of upwind schemes on
unstructured meshes,” AIAA Paper 89-0366, Jan. 1989.

[11] Baumgart, B. G., “A polyhedron representation for computer vision.” in Proc. AFIPS
Natl. Comp. Conf., 44:589-596, 1975.

[12] Bayyuk, S., Euler Flows with Arbitrary Geometries and Moving Boundaries. Ph.D
thesis, Dept. of Aero. and Mech. Eng., Univ. of Mich., 1996.

[13] Berger M.J., Aftosmis, M.J., and Melton, J.E., “Accuracy, adaptive methods and com-
plex geometry,” Proc. 1st AFOSR Conf. on Dynam. Mot. in CFD. Rutgers, NJ 1996.

[14] Berger M.J., and Colella, P., “Local adaptive mesh refinement for shock hydrodynam-
ics.” Jol. of Comp. Physics, 82:64-84, 1989

[15] Berger, M.J., and Jameson, A., “An adaptive multigrid method for the Euler equa-
tions,” Lecture Notes in Physics, 218, 1984.

[16] Berger, M.J., and LeVeque, R., “Stable Boundary Conditions for Cartesian Grid Cal-
culations”, ICASE Report No. 90-37, 1990.

[17] Berger, M.J., and LeVeque, R., “Cartesian Meshes and Adaptive Mesh Refinement for
Hyperbolic Partial Differential Equations”, Proc. 3rd Intl. Conf. Hyp. Problems, Upp-
sala, Sweden, 1990.

[18] Berger, M.J., and Melton, J.E., “An Accuracy Test of a Cartesian Grid Method for
Steady flow in Complex Geometries,” Proc. 8thrIntl. Conf. Hyp. Problems, Uppsala,
Stonybrook, NY, Jun., 1995. also RIACS Report 95-02.

[19] Berger, M.J., and Oliger, J., “Adaptive mesh refinement for hyperbolic partial differ-
ential equations.” Jol. of Comp. Physics. 53:482-512, 1984.

− 102 −

[20] Bonet, J., and Peraire, J., “An alternating digital tree (ADT) Algorithm for Geometric
Searching and Intersection Problems.” Int. J. Num. Meth. Eng, 31:1-17, 1991.

[21] Boris, J., “A vectorised algorithm for determining the nearest neighbours.” Jol. Comp.
Phy., 66:1-20, 1986.

[22] Bowyer, A., “Computing Dirichlet tessellations,” The Computer Jol. 24(2):162-166,
1981

[23] Buell, D.A., and Ward, R.L., “A multiprecise integer arithmetic package,” Jol. of
Supercomputing, 3:89-107, 1989.

[24] Chan, W. M. and Meakin, R. L., “Advances towards automatic surface domain decom-
position and grid generation for overset grids,” AIAA Paper 97-1979, in Proceed. of
the AIAA 13th Comp.Fluid Dyn. Conf., Snowmass, Colorado, Jun. 1997.

[25] Charlton. E.F., and Powell, K.G., “An octree solution to conservation-laws over arbi-
trary regions (OSCAR).” AIAA Paper 97-0198, Jan. 1997.

[26] Chazelle, B., et al., Application Challenges to Computational Geometry: CG Impact
Task Force Report. TR-521-96. Princeton Univ., Apr. 1996.

[27] Chew, L.P., “Constrained Delaunay triangulations,” Algorithmica, 4:97-108, 1989.

[28] Chvátal, V., Linear Programming. Freeman, San Francisco, Ca., 1983.

[29] Clarke, D., Salas, M., and Hassan,H., “Euler Calculations for Multi-Element Airfoils
using Cartesian Grids,” AIAA Jol, 24, 1986.

[30] Cohen, E., “Some Mathematical Tools for a Modeler’s Workbench,” IEEE Comp.
Graph. and App., 3(7), Oct. 1983.

[31] Coirier, W.J., “An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler
Equations,” NASA TM-106754, Oct., 1994. also Ph.D. Thesis, Univ. of Mich., Dept. of
Aero. and Astro. Engr., 1994.

[32] Coirier, W. J., and Powell, K. G., “An Accuracy Assessment of Cartesian-Mesh
Approaches for the Euler Equations”, AIAA Paper 93-3335-CP, July, 1993.

[33] Delaunay, B., “Sur la Sphére Vide,” Izvestia Akademii Nauk SSSR, 7(6):793-800, Oct.
1934.

[34] De Zeeuw, D., and Powell, K., “An Adaptively-Refined Cartesian Mesh Solver for the
Euler Equations,” AIAA Paper 91-1542, 1991.

[35] DT_NURBS Spline Geometry Subprogram Library Theory Document, version 3.3.
USN Surface Warfare Center/Carderock Div. David Taylor Model Basin, Bethesda
MD. CARDEROCKDIV-94/000, Dec. 1996. see also http://dtnet33-
199.dt.navy.mil/dtnurbs/doc.htm

[36] Edelsbrunner H., and Mücke E.P., “Simulation of Simplicity: A Technique to cope
with degenerate cases in geometric algorithms.” ACM Transactions on Graphics,
9(1):66-104, Jan. 1990.

[37] Finkel, R.A., and Bentley, J.L., “Quad trees: a data structure for retrieval on compos-
ite keys,” Acta Informatica, 4(1):1-9, 1974.

[38] Floyd, R.W., and Knuth, D.E., “Addition machines,” SIAM Jol. of Computing,
19(2):329-340, 1990.

[39] Foley, J., van Dam, A., Feiner, S., Hughes, J., Computer Graphics: Principles and
Practice, ISBN 0-201-84840-6, Addison-Wesley, Reading, MA, 1995.

[40] Forrer, H., Boundary Treatment for a Cartesian Grid Method, Seminar für
Angewandte Mathmatic, ETH Zürich, ETH Research Report No. 96-04, 1996. see
http://www.sam.math.ethz.ch/Reports/1996-04.html

− 103 −

[41] Forrer, H., Second Order Accurate Boundary Treatment for Cartesian Grid Methods,
Seminar für Angewandte Mathmatic, ETH Zürich, ETH Research Report No. 96-13,
1996. see http://www.sam.math.ethz.ch/Reports/1996-13.html

[42] Gaffney, R., Hassan, H., and Salas, M., “Euler Calculations for Wings Using Carte-
sian Grids,” AIAA Paper 87-0356, Jan.,1987.

[43] Gooch, C.F., “Solution of the Navier-Stokes Equations on Locally-Refined Cartesian
Meshes,” Ph.D. Dissertation, Dept. of Aero. Astro. Stanford Univ., Dec., 1993.

[44] Green, P.J., and Sibson, R., “Computing the Dirichlet Tessellation in the Plane.” The
Computer Journal, 2(21):168-173, 1977.

[45] Grossman, B., and Whitaker, D., “Supersonic Flow Computations using a Rectangu-
lar-Coordinate Finite-Volume Method,” AIAA Paper 86-0442, Jan., 1986.

[46] Guibas, L.J., Knuth, D.E., and Sharir, M., “Randomized incremental construction of
Delaunay and Voronoi Diagrams”, Algorithmica 7(4):381-413, 1992.

[47] Karman, S.L.Jr., “Splitflow: A 3D unstructured Cartesian/prismatic grid CFD code
for complex geometries,” AIAA 95-0343, Jan., 1995.

[48] Knuth, D., The Art of Computer Programming: Seminumerical Algorithms, Vol.2.,
Addison Wesley, 1973.

[49] Knuth, D., The Art of Computer Programming: Sorting and Searching, Vol.3., Addi-
son Wesley, 1973.

[50] Knuth, D.E., Axioms and Hulls. Lecture Notes in Comp. Sci. #606., Springer-Verlag,
Heidelberg, 1992.

[51] Lednicer, D., Tidd, D., and Birch, N., “Analysis of a Close Coupled Nacelle Installation
using a Panel Method (VSAERO) and a Multigrid Euler Method (MGAERO),” ICAS-
94-2.2.1, 1994.

[52] Levy, D., Wariner, D., and Nelson, E., “Validation of Computational Euler Solutions
for a High Speed Business Jet”, AIAA 94-1843, Jun., 1994.

[53] Liang, Y., and Barsky, B.A., “An analysis and algorithm for polygon clipping,” Comm.
of the ACM, 26(3):868-877, 1983.

[54] Löhner, R., “Regridding surface triangulations,” Jol. Comp. Phy. 126:1-10, 1996.

[55] Mavriplis, D.J., Unstructured Mesh Generation and Adaptivity, von Karman Institute
for Fluid Dynamics, Lecture Series 1994-05, Rhode-Saint-Genèse, Belgium, Mar. 13-
17, 1995.

[56] Melton, J.E., Automated Three-Dimensional Cartesian Grid Generation and Euler
Flow Solutions for Arbitrary Geometries, Ph.D. thesis, Univ. CA. Davis CA, 1996.

[57] Melton, J.E., Berger, M.J., Aftosmis, M.J., and Wong, M.D., “3D Applications of a Car-
tesian Grid Euler Method,” AIAA Paper 95-0853, Jan., 1995.

[58] Melton, J.E., Enomoto, F.Y., and Berger, M.J., “3D Automatic Cartesian Grid Genera-
tion for Euler Flows,” AIAA Paper -93-3386-CP, Jul., 1993.

[59] Minion, M., Two Methods for the Study of Vortex Patch Evolution on Locally Refined
Grids., Ph.D. thesis, Univ. CA Berkeley, May 1994.

[60] Mücke, E.P., Saias, I., and Zhu, B., “Fast randomized point location without prepro-
cessing in two- and three-dimensional Delaunay triangulations,” Proceedings of the
Twelfth Annual Symposium on Computational Geometry, ACM, May 1996.

[61] Newman, W.M., Sproull, R.F., Principles of Interactive Computer Graphics, 2nd ed.,
McGraw-Hill, NY, 1979.

[62] Ni, R.H., “A multiple grid scheme for solving the Euler equations,” AIAA Jol.,
20(11):1565-1571, Nov. 1982.

− 104 −

[63] Noh, W., Gee, M., and Kramer, G., Technical Report UCID-18515, Lawerence Liver-
more National Laboratory, 1979.

[64] O’Rourke, J., Computational Geometry in C, Cambridge Univ. Press, NY, 1993.

[65] PARASOLIDS. see http://www.edsug.com/

[66] Pember R., et al. “The modeling of a laboratory natural gas-fired furnace with a
higher-order projection method for unsteady combustion,” TR UCRL-JC-123244,
Lawerence Livermore National Lab., Feb. 1996.

[67] Pember, R.B., Bell, J.B., Colella, P., Crutchfield, W.Y., and Welcome, M.L., “An adap-
tive Cartesian grid method for unsteady compressible flow in irregular regions,” Jol.
of Comp. Phy., 120:278-304, 1995.

[68] Pember, R.B., Greenough, J., and Colella, P., “An adaptive, higher-order Godunov
method for gas dynamics in three-dimensional orthogonal curvilinear coordinates,”
TR UCRL-JC-123351, Lawerence Livermore National Lab., Feb. 1996.

[69] Peraire, J., and Morgan, K., “Viscous unstructured mesh generation using directional
refinement,” Proc. of the 5th Num. Grid Gen in CFD and Related Fields Conf.MS, Apr.
1996.

[70] Powell, K., Solution of the Euler and Magnetohydrodynamic Equations on Solution-
Adaptive Cartesian Grids, von Karman Institute for Fluid Dynamics, Lecture Series
1994-05, Rhode-Saint-Genèse, Belgium, Mar. 1996.

[71] Preparata, F.P., and Shamos, M.I., Computational Geometry: An Introduction,
Springer-Verlag, 1985

[72] Priest, D.M., “Algorithms for arbitrary precision floating point arithmetic,” Tenth
Symposium on Computer Arithmetic, pp. 132-143, IEEE Comp. Soc.Press, 1991.

[73] Purvis, J., and Burkhalter, J., “Prediction of Critical Mach Number for Store Configu-
rations”, AIAA Jol. 17(11), 1979.

[74] Quirk, J., “An alternative to unstructured grids for computing gas dynamic flows
around arbitrarily complex two dimensional bodies,” ICASE Report 92-7, 1992.

[75] Reed, K., “The Initial Graphics Exchange Specification (IGES) Version 5.1”, Sept.
1991.

[76] Roma, A., A Multilevel Self Adaptive Version of the Immersed Boundary Method,
Ph.D. thesis, NY Univ., Jan. 1996.

[77] Samet, H., The Design and Analysis of Spatial Data Structures. Addison-Wesley
Series on Computer Science and Information Processing. Addison-Wesley Publishing
Company, 1990.

[78] Schaudt, B., and Drysdale, R.L., “Multiplicatively weighted crystal growth Voronoi
diagrams,” in Proc. 7th Ann. Symp. Comp. Geom. ACM, pp.214-223, 1991.

[79] Sedgewick, R., Algorithms, Addison Wesley, Reading. 1988.

[80] Shewchuk, J.R., “Robust adaptive floating-point geometric predicates,” Proceedings of
the Twelfth Annual Symposium on Computational Geometry, pp.141-150, ACM, May
1996.

[81] Shewchuk, J.R., “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geo-
metric Predicates.” CMU-CS-96-140, School of Computer Science, Carnegie Mellon
Univ., 1996. currently also available at:
http://www.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-predicates.ps

[82] Sloan S.W., “A fast algorithm for generating constrained Delaunay triangulations,”
Computers and Structures, Pergammon Press Ltd., 47(3):441-450, 1993.

[83] Sterbenz, P.H., Floating-Point Computation, Prentice-Hall, Englewood Cliffs, NJ,
1974.

− 105 −

[84] Sutherland, I.E., and Hodgman, G.W., “Reentrant polygon clipping,” Comm of the
ACM, 17(1):32-42, 1974.

[85] Tidd, D. M., Strash, D. J., Epstein, B., Luntz, A., Nachson, A., and Rubin, T., “Applica-
tion of an Efficient 3-D Multigrid Euler Method (MGAERO) to Complete Aircraft
Configurations”, AIAA Paper 91-3236, Jun., 1991.

[86] Van Vlack, L.H., Elements of Material Science and Engineering, Addison-Wesley Inc.,
1980.

[87] Voorhies, D., Graphics Gems II: Triangle-Cube Intersections. Academic Press, Inc.
1992.

[88] Voronoi, G., “Nouvelles applications des paramétres continus á la théorie des formes
quadratiques,” Jol. Reine Angew. Math. 133:97-178, 1907.

[89] Wang, Z.J., Przekwas, A., and Hufford, G., “Adaptive Cartesian/adaptive prism grid
generation for complex geometry,” AIAA Paper 97-0860, Jan. 1997.

[90] Watson, D.F., “Computing the n-dimensional Delaunay tessellation with application
to Voronoi polytopes,” The Computer Jol. 24(2);167-171, 1981.

[91] Welterlen, T.J., and Karman, S.L.Jr., “Rapid Assessment of F-16 Store Trajectories
Using Unstructured CFD,” AIAA 95-0354, Jan., 1995.

[92] Wendroff, B., and White, A., “Supraconvergent schemes for hyperbolic equations on
irregular grids,” Notes on Numerical Fluid Mech. 24, 1989.

[93] Woodward, P., “Piecewise parabolic methods for astrophysical fluid dynamics.” In K. -
H., Winkler and Norman M. editors, Astrophysical Radiation Hydrodynamics, 1986.

[94] Yap, C-.K., “Geometric consistency theorem for a symbolic perturbation scheme,” Jol.
of Comp. and Sys. Sci. 40(1):2-18, 1990.

[95] Yap, C.-K., “Symbolic Treatment of geometric degeneracies,” Jol. Symbolic Comput,
10:349-370, 1990.

[96] Yap, C., Dubé, T., “The exact computation paradigm,” Computing in Euclidean Geom-
etry, (2nd Ed.), Eds, D.-Z. Du, and F.K. Hwang, World Scientific Press, pp. 452-492,
1995.

	Appendix B

